teal
application to use regression plot with various datasets typesThis vignette will guide you through the four parts to create a teal
application using
various types of datasets using the regression plot module tm_a_regression()
:
app
variablelibrary(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets
Inside this app 4 datasets will be used
ADSL
A wide data set with subject dataADRS
A long data set with response data for subjects at different time points of the studyADTTE
A long data set with time to event dataADLB
A long data set with lab measurements for each subjectdata <- teal_data() data <- within(data, { ADSL <- teal.data::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.data::rADRS ADTTE <- teal.data::rADTTE ADLB <- teal.data::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ "N", CHG > 1 ~ "P", TRUE ~ "-" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]
app
variableThis is the most important section. We will use the teal::init()
function to
create an app. The data will be handed over using teal.data::teal_data()
. The app
itself will be constructed by multiple calls of tm_a_regression()
using different
combinations of data sets.
# configuration for the single wide dataset mod1 <- tm_a_regression( label = "Single wide dataset", response = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADSL"]], c("BMRKR1", "BMRKR2")), selected = "BMRKR1", multiple = FALSE, fixed = FALSE ) ), regressor = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADSL"]], c("AGE", "SEX", "RACE")), selected = "AGE", multiple = TRUE, fixed = FALSE ) ) ) # configuration for the two wide datasets mod2 <- tm_a_regression( label = "Two wide datasets", default_plot_type = 2, response = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADSL"]], c("BMRKR1", "BMRKR2")), selected = "BMRKR1", multiple = FALSE, fixed = FALSE ) ), regressor = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADSL"]], c("AGE", "SEX", "RACE")), selected = c("AGE", "RACE"), multiple = TRUE, fixed = FALSE ) ) ) # configuration for the same long datasets (same subset) mod3 <- tm_a_regression( label = "Same long datasets (same subset)", default_plot_type = 2, response = data_extract_spec( dataname = "ADTTE", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADTTE"]], c("AVAL", "CNSR")), selected = "AVAL", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = "Select parameter:", vars = "PARAMCD", choices = value_choices(data[["ADTTE"]], "PARAMCD", "PARAM"), selected = "PFS", multiple = FALSE ) ), regressor = data_extract_spec( dataname = "ADTTE", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADTTE"]], c("AGE", "CNSR", "SEX")), selected = c("AGE", "CNSR", "SEX"), multiple = TRUE ), filter = filter_spec( label = "Select parameter:", vars = "PARAMCD", choices = value_choices(data[["ADTTE"]], "PARAMCD", "PARAM"), selected = "PFS", multiple = FALSE ) ) ) # configuration for the wide and long datasets mod4 <- tm_a_regression( label = "Wide and long datasets", response = data_extract_spec( dataname = "ADLB", filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADLB"]], "PARAMCD", "PARAM"), selected = levels(data[["ADLB"]]$PARAMCD)[2], multiple = TRUE, label = "Select measurement:" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADLB"]]$AVISIT), selected = levels(data[["ADLB"]]$AVISIT)[2], multiple = TRUE, label = "Select visit:" ) ), select = select_spec( label = "Select variable:", choices = "AVAL", selected = "AVAL", multiple = FALSE, fixed = TRUE ) ), regressor = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADSL"]], c("BMRKR1", "BMRKR2", "AGE")), selected = "AGE", multiple = TRUE, fixed = FALSE ) ) ) # configuration for the same long datasets (different subsets) mod5 <- tm_a_regression( label = "Same long datasets (different subsets)", default_plot_type = 2, response = data_extract_spec( dataname = "ADLB", filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADLB"]], "PARAMCD", "PARAM"), selected = levels(data[["ADLB"]]$PARAMCD)[1], multiple = TRUE, label = "Select lab:" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADLB"]]$AVISIT), selected = levels(data[["ADLB"]]$AVISIT)[1], multiple = TRUE, label = "Select visit:" ) ), select = select_spec( choices = "AVAL", selected = "AVAL", multiple = FALSE, fixed = TRUE ) ), regressor = data_extract_spec( dataname = "ADLB", filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADLB"]], "PARAMCD", "PARAM"), selected = levels(data[["ADLB"]]$PARAMCD)[1], multiple = FALSE, label = "Select labs:" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADLB"]]$AVISIT), selected = levels(data[["ADLB"]]$AVISIT)[1], multiple = FALSE, label = "Select visit:" ) ), select = select_spec( choices = variable_choices(data[["ADLB"]], c("AVAL", "AGE", "BMRKR1", "BMRKR2", "SEX", "ARM")), selected = c("AVAL", "BMRKR1"), multiple = TRUE ) ) ) # initialize the app app <- init( data = data, modules = modules( modules( label = "Regression plots", mod1, mod2, mod3, mod4, mod5 ) ) )
A simple shiny::shinyApp()
call will let you run the app.
Note that app is only displayed when running this code inside an R
session.
shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))
code <- paste0(c( knitr::knit_code$get("library"), knitr::knit_code$get("data"), knitr::knit_code$get("app"), knitr::knit_code$get("shinyapp") ), collapse = "\n") url <- roxy.shinylive::create_shinylive_url(code) cat(sprintf("[Open in Shinylive](%s)\n\n", url))
knitr::include_url(url, height = "800px")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.