View source: R/tm_missing_data.R
| tm_missing_data | R Documentation |
teal module: Missing data analysisThis module analyzes missing data in data.frames to help users explore missing observations and
gain insights into the completeness of their data.
It is useful for clinical data analysis within the context of CDISC standards and
adaptable for general data analysis purposes.
tm_missing_data(
label = "Missing data",
plot_height = c(600, 400, 5000),
plot_width = NULL,
datanames = "all",
parent_dataname = "ADSL",
ggtheme = c("classic", "gray", "bw", "linedraw", "light", "dark", "minimal", "void"),
ggplot2_args = list(`Combinations Hist` = teal.widgets::ggplot2_args(labs =
list(caption = NULL)), `Combinations Main` = teal.widgets::ggplot2_args(labs =
list(title = NULL))),
pre_output = NULL,
post_output = NULL,
transformators = list(),
decorators = list()
)
Object of class teal_module to be used in teal applications.
This module generates the following objects, which can be modified in place using decorators:
summary_plot (grob created with ggplot2::ggplotGrob())
combination_plot (grob created with ggplot2::ggplotGrob())
by_subject_plot (ggplot)
A Decorator is applied to the specific output using a named list of teal_transform_module objects.
The name of this list corresponds to the name of the output to which the decorator is applied.
See code snippet below:
tm_missing_data(
..., # arguments for module
decorators = list(
summary_plot = teal_transform_module(...), # applied only to `summary_plot` output
combination_plot = teal_transform_module(...), # applied only to `combination_plot` output
by_subject_plot = teal_transform_module(...) # applied only to `by_subject_plot` output
)
)
For additional details and examples of decorators, refer to the vignette
vignette("decorate-module-output", package = "teal.modules.general").
To learn more please refer to the vignette
vignette("transform-module-output", package = "teal") or the teal::teal_transform_module() documentation.
# general example data
data <- teal_data()
data <- within(data, {
require(nestcolor)
add_nas <- function(x) {
x[sample(seq_along(x), floor(length(x) * runif(1, .05, .17)))] <- NA
x
}
iris <- iris
mtcars <- mtcars
iris[] <- lapply(iris, add_nas)
mtcars[] <- lapply(mtcars, add_nas)
mtcars[["cyl"]] <- as.factor(mtcars[["cyl"]])
mtcars[["gear"]] <- as.factor(mtcars[["gear"]])
})
app <- init(
data = data,
modules = modules(
tm_missing_data(parent_dataname = "mtcars")
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}
# CDISC example data
data <- teal_data()
data <- within(data, {
require(nestcolor)
ADSL <- teal.data::rADSL
ADRS <- rADRS
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
app <- init(
data = data,
modules = modules(
tm_missing_data()
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.