confidence_interval_fisher | R Documentation |
For large samples (n >=25
) i performs are parametric estimate based on
sample_circular_dispersion()
. For smaller size samples, it returns a
bootstrap estimate.
confidence_interval_fisher(
x,
conf.level = 0.95,
w = NULL,
axial = TRUE,
na.rm = TRUE,
boot = FALSE,
R = 1000L,
quiet = FALSE
)
x |
numeric vector. Values in degrees. |
conf.level |
Level of confidence: |
w |
(optional) Weights. A vector of positive numbers and of the same
length as |
axial |
logical. Whether the data are axial, i.e. pi-periodical
( |
na.rm |
logical value indicating whether |
boot |
logical. Force bootstrap estimation |
R |
integer. number of bootstrap replicates |
quiet |
logical. Prints the used estimation (parametric or bootstrap). |
list
N.I. Fisher (1993) Statistical Analysis of Circular Data, Cambridge University Press.
# Example data from Davis (1986), pp. 316
finland_stria <- c(
23, 27, 53, 58, 64, 83, 85, 88, 93, 99, 100, 105, 113,
113, 114, 117, 121, 123, 125, 126, 126, 126, 127, 127, 128, 128, 129, 132,
132, 132, 134, 135, 137, 144, 145, 145, 146, 153, 155, 155, 155, 157, 163,
165, 171, 172, 179, 181, 186, 190, 212
)
confidence_interval_fisher(finland_stria, axial = FALSE)
confidence_interval_fisher(finland_stria, axial = FALSE, boot = TRUE)
data(san_andreas)
data("nuvel1")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
sa.por <- PoR_shmax(san_andreas, PoR, "right")
confidence_interval_fisher(sa.por$azi.PoR, w = 1 / san_andreas$unc)
confidence_interval_fisher(sa.por$azi.PoR, w = 1 / san_andreas$unc, boot = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.