View source: R/roll_statistics.R
distance_binned_stats | R Documentation |
Circular summary statistics over intervals of distances.
distance_binned_stats(
azi,
distance,
n.breaks = 10,
width.breaks = NULL,
unc = NULL,
prd = NULL,
prd.error = NULL,
kappa = 2,
R = 1000,
conf.level = 0.95,
...
)
azi |
numeric. Azimuth values in degrees. |
distance |
numeric. the independent variable along the values in |
n.breaks |
numeric. number (greater than or equal to 2) giving the
number of equal-sized intervals into which |
width.breaks |
numeric. The width of the intervals into which |
unc |
(optional) Uncertainties of |
prd |
(optional) numeric. A predicted orientation in degrees. |
prd.error |
(optional) numeric. The uncertainty of the predicted orientation in degrees. |
kappa |
numeric. Concentration parameter applied for the circular mode. |
R |
integer. Number of bootstrap iterates for estimating the error of the dispersion. |
conf.level |
The level of confidence for confidence interval and bootstrapped standard error of dispersion. |
... |
optional arguments passed to |
tibble containing the n
values for azi
in each bin, min/median/max
distance of the bin, and the summary statistics for azi
.
If prd
is specified, the normal Chi-squared statistic, dispersion and its
standard error are returned as well.
circular_summary()
, circular_dispersion()
, and circular_dispersion_boot()
data("plates")
plate_boundary <- subset(plates, plates$pair == "na-pa")
data("san_andreas")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
san_andreas$distance <- distance_from_pb(
x = san_andreas,
PoR = PoR,
pb = plate_boundary,
tangential = TRUE
)
dat <- san_andreas |> cbind(PoR_shmax(san_andreas, PoR, "right"))
distance_binned_stats(dat$azi.PoR,
distance = dat$distance, width.breaks = 1,
unc = dat$unc, prd = 135
) |> head()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.