| watson_test | R Documentation |
U^2 Test of Circular UniformityWatson's test statistic is a rotation-invariant Cramer - von Mises test
watson_test(
x,
alpha = 0,
dist = c("uniform", "vonmises"),
axial = TRUE,
mu = NULL,
quiet = FALSE
)
x |
numeric vector. Values in degrees |
alpha |
Significance level of the test. Valid levels are |
dist |
Distribution to test for. The default, |
axial |
logical. Whether the data are axial, i.e. |
mu |
(optional) The specified mean direction (in degrees) in alternative hypothesis |
quiet |
logical. Prints the test's decision. |
If statistic > p.value, the null hypothesis is rejected.
If not, randomness (uniform distribution) cannot be excluded.
list containing the test statistic statistic and the significance
level p.value.
Mardia and Jupp (1999). Directional Statistics. John Wiley and Sons.
# Example data from Mardia and Jupp (1999), pp. 93
pidgeon_homing <- c(55, 60, 65, 95, 100, 110, 260, 275, 285, 295)
watson_test(pidgeon_homing, alpha = .05)
# San Andreas Fault Data:
data(san_andreas)
data("nuvel1")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
sa.por <- PoR_shmax(san_andreas, PoR, "right")
watson_test(sa.por$azi.PoR, alpha = .05)
watson_test(sa.por$azi.PoR, alpha = .05, dist = "vonmises")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.