watson_test | R Documentation |
U^2
Test of Circular UniformityWatson's test statistic is a rotation-invariant Cramer - von Mises test
watson_test(
x,
alpha = 0,
dist = c("uniform", "vonmises"),
axial = TRUE,
mu = NULL,
quiet = FALSE
)
x |
numeric vector. Values in degrees |
alpha |
Significance level of the test. Valid levels are |
dist |
Distribution to test for. The default, |
axial |
logical. Whether the data are axial, i.e. |
mu |
(optional) The specified mean direction (in degrees) in alternative hypothesis |
quiet |
logical. Prints the test's decision. |
If statistic > p.value
, the null hypothesis is rejected.
If not, randomness (uniform distribution) cannot be excluded.
list containing the test statistic statistic
and the significance
level p.value
.
Mardia and Jupp (2000). Directional Statistics. John Wiley and Sons.
# Example data from Mardia and Jupp (2001), pp. 93
pidgeon_homing <- c(55, 60, 65, 95, 100, 110, 260, 275, 285, 295)
watson_test(pidgeon_homing, alpha = .05)
# San Andreas Fault Data:
data(san_andreas)
data("nuvel1")
PoR <- subset(nuvel1, nuvel1$plate.rot == "na")
sa.por <- PoR_shmax(san_andreas, PoR, "right")
watson_test(sa.por$azi.PoR, alpha = .05)
watson_test(sa.por$azi.PoR, alpha = .05, dist = "vonmises")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.