matAR.RR.est | R Documentation |
Estimation of the reduced rank MAR(1) model, using least squares (RRLSE) or MLE (RRMLE), as determined by the value of method
.
matAR.RR.est(xx, method, A1.init=NULL, A2.init=NULL,Sig1.init=NULL,Sig2.init=NULL,
k1=NULL, k2=NULL, niter=200,tol=1e-4)
xx |
|
method |
character string, specifying the method of the estimation to be used.
|
A1.init |
initial value of |
A2.init |
initial value of |
Sig1.init |
only if |
Sig2.init |
only if |
k1 |
rank of |
k2 |
rank of |
niter |
maximum number of iterations if error stays above |
tol |
relative Frobenius norm error tolerance. |
The reduced rank MAR(1) model takes the form:
X_t = A_1 X_{t-1} A_2^{^\top} + E_t,
where A_i
are d_i \times d_i
coefficient matrices of ranks \mathrm{rank}(A_i) = k_i \le d_i
, i=1,2
. For the MLE method we also assume
\mathrm{Cov}(\mathrm{vec}(E_t))=\Sigma_2 \otimes \Sigma_1
return a list containing the following:
A1
estimator of A_1
, a d_1
by d_1
matrix.
A2
estimator of A_2
, a d_2
by d_2
matrix.
loading
a list of estimated U_i
, V_i
,
where we write A_i=U_iD_iV_i
as the singular value decomposition (SVD) of A_i
, i = 1,2
.
Sig1
only if method=MLE
, when \mathrm{Cov}(\mathrm{vec}(E_t))=\Sigma_2 \otimes \Sigma_1
.
Sig2
only if method=MLE
, when \mathrm{Cov}(\mathrm{vec}(E_t))=\Sigma_2 \otimes \Sigma_1
.
res
residuals.
Sig
sample covariance matrix of the residuals vec(\hat E_t
).
cov
a list containing
Sigma
asymptotic covariance matrix of (vec( \hat A_1
),vec(\hat A_2^{\top}
)).
Theta1.u
, Theta1.v
asymptotic covariance matrix of vec(\hat U_1
), vec(\hat V_1
).
Theta2.u
, Theta2.v
asymptotic covariance matrix of vec(\hat U_2
), vec(\hat V_2
).
sd.A1
element-wise standard errors of \hat A_1
, aligned with A1
.
sd.A2
element-wise standard errors of \hat A_2
, aligned with A2
.
niter
number of iterations.
BIC
value of the extended Bayesian information criterion.
Reduced Rank Autoregressive Models for Matrix Time Series, by Han Xiao, Yuefeng Han, Rong Chen and Chengcheng Liu.
set.seed(333)
dim <- c(3,3)
xx <- tenAR.sim(t=500, dim, R=2, P=1, rho=0.5, cov='iid')
est <- matAR.RR.est(xx, method="RRLSE", k1=1, k2=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.