| matAR.RR.se | R Documentation |
Asymptotic covariance matrix of the reduced rank MAR(1) model. If Sigma1 and Sigma2 is provided in input,
we assume a separable covariance matrix, Cov(vec(E_t)) = \Sigma_2 \otimes \Sigma_1.
matAR.RR.se(A1,A2,k1,k2,method,Sigma.e=NULL,Sigma1=NULL,Sigma2=NULL,RU1=diag(k1),
RV1=diag(k1),RU2=diag(k2),RV2=diag(k2),mpower=100)
A1 |
left coefficient matrix. |
A2 |
right coefficient matrix. |
k1 |
rank of |
k2 |
rank of |
method |
character string, specifying the method of the estimation to be used.
|
Sigma.e |
only if |
Sigma1, Sigma2 |
only if |
RU1, RV1, RU2, RV2 |
orthogonal rotations of |
mpower |
truncate the VMA( |
a list containing the following:
Sigmaasymptotic covariance matrix of (vec(\hat A_1),vec(\hat A_2^T)).
Theta1.uasymptotic covariance matrix of vec(\hat U_1).
Theta1.vasymptotic covariance matrix of vec(\hat V_1).
Theta2.uasymptotic covariance matrix of vec(\hat U_2).
Theta2.vasymptotic covariance matrix of vec(\hat V_2).
Han Xiao, Yuefeng Han, Rong Chen and Chengcheng Liu, Reduced Rank Autoregressive Models for Matrix Time Series.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.