tenAR.est | R Documentation |
Estimation function for tensor autoregressive models. Methods include
projection (PROJ), Least Squares (LSE), maximum likelihood estimation (MLE)
and vector autoregressive model (VAR), as determined by the value of method
.
tenAR.est(xx,R=1,P=1,method="LSE",init.A=NULL,init.sig=NULL,niter=150,tol=1e-6)
xx |
|
R |
Kronecker rank for each lag, a vector for |
P |
Autoregressive order, a positive integer. |
method |
character string, specifying the type of the estimation method to be used.
|
init.A |
initial values of coefficient matrices |
init.sig |
only if |
niter |
maximum number of iterations if error stays above |
tol |
error tolerance in terms of the Frobenius norm. |
Tensor autoregressive model (of autoregressive order one) has the form:
X_t = \sum_{r=1}^R X_{t-1} \times_{1} A_1^{(r)} \times_{2} \cdots \times_{K} A_K^{(r)} + E_t,
where A_k^{(r)}
are d_k \times d_k
coefficient matrices, k=1,\cdots,K
, and E_t
is a tensor white noise. R
is the Kronecker rank.
The model of autoregressive order P
takes the form
X_t = \sum_{i=1}^{P} \sum_{r=1}^{R_i} X_{t-i} \times_{1} A_{1}^{(ir)} \times_{2} \cdots \times_{K} A_{K}^{(ir)} + E_t.
For the "MLE" method, we also assume,
\mathrm{Cov}(\mathrm{vec}(E_t))= \Sigma_K \otimes \Sigma_{K-1} \otimes \cdots \otimes \Sigma_1,
return a list containing the following:
A
a list of estimated coefficient matrices A_k^{(ir)}
. It is a multi-layer list,
the first layer for the lag 1 \le i \le P
, the second the term 1 \le r \le R
, and the third the mode 1 \le k \le K
. See "Details".
SIGMA
only if method=MLE
, a list of estimated \Sigma_1,\ldots,\Sigma_K
.
res
residuals
Sig
sample covariance matrix of the residuals vec(\hat E_t
).
cov
grand covariance matrix of all estimated entries of A_k^{(ir)}
sd
standard errors of the coefficient matrices A_k^{(ir)}
, returned as a list aligned with A
.
niter
number of iterations.
BIC
value of extended Bayesian information criterion.
Rong Chen, Han Xiao, and Dan Yang. "Autoregressive models for matrix-valued time series". Journal of Econometrics, 2020.
Zebang Li, Han Xiao. "Multi-linear tensor autoregressive models". arxiv preprint arxiv:2110.00928 (2021).
set.seed(333)
# case 1: tensor-valued time series
dim <- c(2,2,2)
xx <- tenAR.sim(t=100, dim, R=2, P=1, rho=0.5, cov='iid')
est <- tenAR.est(xx, R=2, P=1, method="LSE") # two-term tenAR(1) model
A <- est$A # A is a multi-layer list
length(A) == 1 # TRUE, since the order P = 1
length(A[[1]]) == 2 # TRUE, since the number of terms R = 2
length(A[[1]][[1]]) == 3 # TRUE, since the mode K = 3
# est <- tenAR.est(xx, R=c(1,2), P=2, method="LSE") # tenAR(2) model with R1=1, R2=2
# case 2: matrix-valued time series
dim <- c(2,2)
xx <- tenAR.sim(t=100, dim, R=2, P=1, rho=0.5, cov='iid')
est <- tenAR.est(xx, R=2, P=1, method="LSE") # two-term MAR(1) model
A <- est$A # A is a multi-layer list
length(A) == 1 # TRUE, since the order P = 1
length(A[[1]]) == 2 # TRUE, since the number of terms R = 2
length(A[[1]][[1]]) == 2 # TRUE, since the mode K = 2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.