Nothing
#' Helper function to produce data frame with results
#' of pool for a single visit
#'
#' `r lifecycle::badge("experimental")`
#'
#' @param x (`pool`) is a list of pooled object from `rbmi` analysis results. This list includes
#' analysis results, confidence level, hypothesis testing type.
#' @return Data frame with results of pool for a single visit.
#' @export
#'
#' @examples
#' data("rbmi_test_data")
#' pool_obj <- rbmi_test_data
#'
#' h_tidy_pool(pool_obj$pars[1:3])
#'
h_tidy_pool <- function(x) {
contr <- x[[grep("trt_", names(x))]]
ref <- x[[grep("lsm_ref_", names(x))]]
alt <- x[[grep("lsm_alt_", names(x))]]
df_ref <- data.frame(
group = "ref",
est = ref$est,
se_est = ref$se,
lower_cl_est = ref$ci[1],
upper_cl_est = ref$ci[2],
est_contr = NA_real_,
se_contr = NA_real_,
lower_cl_contr = NA_real_,
upper_cl_contr = NA_real_,
p_value = NA_real_,
relative_reduc = NA_real_,
stringsAsFactors = FALSE
)
df_alt <- data.frame(
group = "alt",
est = alt$est,
se_est = alt$se,
lower_cl_est = alt$ci[1],
upper_cl_est = alt$ci[2],
est_contr = contr$est,
se_contr = contr$se,
lower_cl_contr = contr$ci[1],
upper_cl_contr = contr$ci[2],
p_value = contr$pvalue,
relative_reduc = contr$est / df_ref$est,
stringsAsFactors = FALSE
)
result <- rbind(
df_ref,
df_alt
)
result
}
#' Helper method (for [`broom::tidy()`]) to prepare a data frame from an
#' `pool` `rbmi` object containing the LS means and contrasts and multiple visits
#'
#' `r lifecycle::badge("experimental")`
#'
#' @method tidy pool
#' @param x (`pool`) is a list of pooled object from `rbmi` analysis results. This list includes
#' analysis results, confidence level, hypothesis testing type.
#' @param ... Additional arguments. Not used. Needed to match generic signature only.
#' @export
#' @return A dataframe
#'
tidy.pool <- function(x, ...) { # nolint
ls_raw <- x$pars
visit_raw_names <- names(ls_raw)[grep("trt_", names(ls_raw))]
l_visit_names <- strsplit(visit_raw_names, "trt_")
visit_names <- vapply(l_visit_names, `[`, 2, FUN.VALUE = character(1))
spl <- rep(visit_names, each = 3)
ls_split <- split(ls_raw, spl)
ls_df <- lapply(ls_split, h_tidy_pool)
result <- do.call(rbind, unname(ls_df))
result$visit <- factor(rep(visit_names, each = 2))
result$group <- factor(result$group, levels = c("ref", "alt"))
result$conf_level <- x$conf.level
result
}
#' Statistics function which is extracting estimates from a tidied LS means
#' data frame.
#'
#' `r lifecycle::badge("experimental")`
#'
#' @param df input dataframe
#' @param .in_ref_col boolean variable, if reference column is specified
#' @param show_relative "reduction" if (`control - treatment`, default) or "increase"
#' (`treatment - control`) of relative change from baseline?
#' @return A list of statistics extracted from a tidied LS means data frame.
#' @export
#'
#' @examples
#' library(rtables)
#' library(dplyr)
#' library(broom)
#'
#' data("rbmi_test_data")
#' pool_obj <- rbmi_test_data
#' df <- tidy(pool_obj)
#'
#' s_rbmi_lsmeans(df[1, ], .in_ref_col = TRUE)
#'
#' s_rbmi_lsmeans(df[2, ], .in_ref_col = FALSE)
#'
s_rbmi_lsmeans <- function(df, .in_ref_col, show_relative = c("reduction", "increase")) {
checkmate::assert_flag(.in_ref_col)
show_relative <- match.arg(show_relative)
if_not_ref <- function(x) `if`(.in_ref_col, character(), x)
list(
adj_mean_se = c(df$est, df$se_est),
adj_mean_ci = formatters::with_label(
c(df$lower_cl_est, df$upper_cl_est),
f_conf_level(df$conf_level)
),
diff_mean_se = if_not_ref(c(df$est_contr, df$se_contr)),
diff_mean_ci = formatters::with_label(
if_not_ref(c(df$lower_cl_contr, df$upper_cl_contr)),
f_conf_level(df$conf_level)
),
change = switch(show_relative,
reduction = formatters::with_label(if_not_ref(df$relative_reduc), "Relative Reduction (%)"),
increase = formatters::with_label(if_not_ref(-df$relative_reduc), "Relative Increase (%)")
),
p_value = if_not_ref(df$p_value)
)
}
#' Formatted Analysis function which can be further customized by calling
#' [`rtables::make_afun()`] on it. It is used as `afun` in [`rtables::analyze()`].
#'
#' `r lifecycle::badge("experimental")`
#'
#' @param df input dataframe
#' @param .in_ref_col boolean variable, if reference column is specified
#' @param show_relative "reduction" if (`control - treatment`, default) or "increase"
#' (`treatment - control`) of relative change from baseline?
#' @return Formatted Analysis function
#' @export
#'
a_rbmi_lsmeans <- make_afun(
s_rbmi_lsmeans,
.labels = c(
adj_mean_se = "Adjusted Mean (SE)",
diff_mean_se = "Difference in Adjusted Means (SE)",
p_value = "p-value (RBMI)"
),
.formats = c(
# n = "xx.", # note we don't have N from `rbmi` result
adj_mean_se = sprintf_format("%.3f (%.3f)"),
adj_mean_ci = "(xx.xxx, xx.xxx)",
diff_mean_se = sprintf_format("%.3f (%.3f)"),
diff_mean_ci = "(xx.xxx, xx.xxx)",
change = "xx.x%",
p_value = "x.xxxx | (<0.0001)"
),
.indent_mods = c(
adj_mean_ci = 1L,
diff_mean_ci = 1L,
change = 1L,
p_value = 1L
),
.null_ref_cells = FALSE
)
#' Analyze function for tabulating LS means estimates from tidied
#' `rbmi` `pool` results.
#'
#' `r lifecycle::badge("experimental")`
#'
#' @param lyt (`layout`)\cr input layout where analyses will be added to.
#' @param table_names (`character`)\cr this can be customized in case that the same `vars` are analyzed multiple times,
#' to avoid warnings from `rtables`.
#' @param .stats (`character`)\cr statistics to select for the table.
#' @param .formats (named `character` or `list`)\cr formats for the statistics.
#' @param .indent_mods (named `integer`)\cr indent modifiers for the labels.
#' @param .labels (named `character`)\cr labels for the statistics (without indent).
#' @param ... additional argument.
#' @return `rtables` layout for tabulating LS means estimates from tidied
#' `rbmi` `pool` results.
#' @export
#'
#' @examples
#' library(rtables)
#' library(dplyr)
#' library(broom)
#'
#' data("rbmi_test_data")
#' pool_obj <- rbmi_test_data
#'
#' df <- tidy(pool_obj)
#'
#' basic_table() %>%
#' split_cols_by("group", ref_group = levels(df$group)[1]) %>%
#' split_rows_by("visit", split_label = "Visit", label_pos = "topleft") %>%
#' summarize_rbmi() %>%
#' build_table(df)
#'
summarize_rbmi <- function(lyt,
...,
table_names = "rbmi_summary",
.stats = NULL,
.formats = NULL,
.indent_mods = NULL,
.labels = NULL) {
afun <- make_afun(
a_rbmi_lsmeans,
.stats = .stats,
.formats = .formats,
.indent_mods = .indent_mods,
.labels = .labels
)
analyze(
lyt = lyt,
vars = "est",
afun = afun,
table_names = table_names,
extra_args = list(...)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.