Nothing
Code
res
Output
$n
n
0
$sum
sum
NA
$mean
mean
NA
$sd
sd
NA
$se
se
NA
$mean_sd
mean sd
NA NA
$mean_se
mean se
NA NA
$mean_ci
mean_ci_lwr mean_ci_upr
NA NA
attr(,"label")
[1] "Mean 95% CI"
$mean_sei
mean_sei_lwr mean_sei_upr
NA NA
attr(,"label")
[1] "Mean -/+ 1xSE"
$mean_sdi
mean_sdi_lwr mean_sdi_upr
NA NA
attr(,"label")
[1] "Mean -/+ 1xSD"
$mean_pval
p_value
NA
attr(,"label")
[1] "Mean p-value (H0: mean = 0)"
$median
median
NA
$mad
mad
NA
$median_ci
median_ci_lwr median_ci_upr
NA NA
attr(,"conf_level")
[1] NA
attr(,"label")
[1] "Median 95% CI"
$quantiles
quantile_0.25 quantile_0.75
NA NA
attr(,"label")
[1] "25% and 75%-ile"
$iqr
iqr
NA
$range
min max
NA NA
$min
min
NA
$max
max
NA
$median_range
median min max
NA NA NA
attr(,"label")
[1] "Median (Min - Max)"
$cv
cv
NA
$geom_mean
geom_mean
NaN
$geom_mean_ci
mean_ci_lwr mean_ci_upr
NA NA
attr(,"label")
[1] "Geometric Mean 95% CI"
$geom_cv
geom_cv
NA
Code
res
Output
$n
n
1
$sum
sum
1
$mean
mean
1
$sd
sd
NA
$se
se
NA
$mean_sd
mean sd
1 NA
$mean_se
mean se
1 NA
$mean_ci
mean_ci_lwr mean_ci_upr
NA NA
attr(,"label")
[1] "Mean 95% CI"
$mean_sei
mean_sei_lwr mean_sei_upr
NA NA
attr(,"label")
[1] "Mean -/+ 1xSE"
$mean_sdi
mean_sdi_lwr mean_sdi_upr
NA NA
attr(,"label")
[1] "Mean -/+ 1xSD"
$mean_pval
p_value
NA
attr(,"label")
[1] "Mean p-value (H0: mean = 0)"
$median
median
1
$mad
mad
0
$median_ci
median_ci_lwr median_ci_upr
NA NA
attr(,"conf_level")
[1] NA
attr(,"label")
[1] "Median 95% CI"
$quantiles
quantile_0.25 quantile_0.75
1 1
attr(,"label")
[1] "25% and 75%-ile"
$iqr
iqr
0
$range
min max
1 1
$min
min
1
$max
max
1
$median_range
median min max
1 1 1
attr(,"label")
[1] "Median (Min - Max)"
$cv
cv
NA
$geom_mean
geom_mean
1
$geom_mean_ci
mean_ci_lwr mean_ci_upr
NA NA
attr(,"label")
[1] "Geometric Mean 95% CI"
$geom_cv
geom_cv
NA
Code
res
Output
$n
n
2
$sum
sum
NA
$mean
mean
NA
$sd
sd
NA
$se
se
NA
$mean_sd
mean sd
NA NA
$mean_se
mean se
NA NA
$mean_ci
mean_ci_lwr mean_ci_upr
NA NA
attr(,"label")
[1] "Mean 95% CI"
$mean_sei
mean_sei_lwr mean_sei_upr
NA NA
attr(,"label")
[1] "Mean -/+ 1xSE"
$mean_sdi
mean_sdi_lwr mean_sdi_upr
NA NA
attr(,"label")
[1] "Mean -/+ 1xSD"
$mean_pval
p_value
NA
attr(,"label")
[1] "Mean p-value (H0: mean = 0)"
$median
median
NA
$mad
mad
NA
$median_ci
median_ci_lwr median_ci_upr
NA NA
attr(,"conf_level")
[1] NA
attr(,"label")
[1] "Median 95% CI"
$quantiles
quantile_0.25 quantile_0.75
NA NA
attr(,"label")
[1] "25% and 75%-ile"
$iqr
iqr
NA
$range
min max
NA NA
$min
min
NA
$max
max
NA
$median_range
median min max
NA NA NA
attr(,"label")
[1] "Median (Min - Max)"
$cv
cv
NA
$geom_mean
geom_mean
NA
$geom_mean_ci
mean_ci_lwr mean_ci_upr
NA NA
attr(,"label")
[1] "Geometric Mean 95% CI"
$geom_cv
geom_cv
NA
Code
res
Output
$n
n
2
$sum
sum
3
$mean
mean
1.5
$sd
sd
0.7071068
$se
se
0.5
$mean_sd
mean sd
1.5000000 0.7071068
$mean_se
mean se
1.5 0.5
$mean_ci
mean_ci_lwr mean_ci_upr
-4.853102 7.853102
attr(,"label")
[1] "Mean 95% CI"
$mean_sei
mean_sei_lwr mean_sei_upr
1 2
attr(,"label")
[1] "Mean -/+ 1xSE"
$mean_sdi
mean_sdi_lwr mean_sdi_upr
0.7928932 2.2071068
attr(,"label")
[1] "Mean -/+ 1xSD"
$mean_pval
p_value
0.2048328
attr(,"label")
[1] "Mean p-value (H0: mean = 0)"
$median
median
1.5
$mad
mad
0
$median_ci
median_ci_lwr median_ci_upr
NA NA
attr(,"conf_level")
[1] NA
attr(,"label")
[1] "Median 95% CI"
$quantiles
quantile_0.25 quantile_0.75
1 2
attr(,"label")
[1] "25% and 75%-ile"
$iqr
iqr
1
$range
min max
1 2
$min
min
1
$max
max
2
$median_range
median min max
1.5 1.0 2.0
attr(,"label")
[1] "Median (Min - Max)"
$cv
cv
47.14045
$geom_mean
geom_mean
1.414214
$geom_mean_ci
mean_ci_lwr mean_ci_upr
0.01729978 115.60839614
attr(,"label")
[1] "Geometric Mean 95% CI"
$geom_cv
geom_cv
52.10922
Code
res
Output
$n
n
8
$sum
sum
48
$mean
mean
6
$sd
sd
3.207135
$se
se
1.133893
$mean_sd
mean sd
6.000000 3.207135
$mean_se
mean se
6.000000 1.133893
$mean_ci
mean_ci_lwr mean_ci_upr
3.318768 8.681232
attr(,"label")
[1] "Mean 95% CI"
$mean_sei
mean_sei_lwr mean_sei_upr
4.866107 7.133893
attr(,"label")
[1] "Mean -/+ 1xSE"
$mean_sdi
mean_sdi_lwr mean_sdi_upr
2.792865 9.207135
attr(,"label")
[1] "Mean -/+ 1xSD"
$mean_pval
p_value
0.001133783
attr(,"label")
[1] "Mean p-value (H0: mean = 0)"
$median
median
6.5
$mad
mad
0
$median_ci
median_ci_lwr median_ci_upr
1 10
attr(,"conf_level")
[1] 0.9921875
attr(,"label")
[1] "Median 95% CI"
$quantiles
quantile_0.25 quantile_0.75
3.5 8.5
attr(,"label")
[1] "25% and 75%-ile"
$iqr
iqr
5
$range
min max
1 10
$min
min
1
$max
max
10
$median_range
median min max
6.5 1.0 10.0
attr(,"label")
[1] "Median (Min - Max)"
$cv
cv
53.45225
$geom_mean
geom_mean
4.842534
$geom_mean_ci
mean_ci_lwr mean_ci_upr
2.456211 9.547283
attr(,"label")
[1] "Geometric Mean 95% CI"
$geom_cv
geom_cv
96.61307
Code
res
Output
$n
[1] 9
$count
$count$Female
[1] 2
$count$Male
[1] 3
$count$Unknown
[1] 4
$count_fraction
$count_fraction$Female
[1] 2.0000000 0.2222222
$count_fraction$Male
[1] 3.0000000 0.3333333
$count_fraction$Unknown
[1] 4.0000000 0.4444444
$fraction
$fraction$Female
num denom
2 9
$fraction$Male
num denom
3 9
$fraction$Unknown
num denom
4 9
$n_blq
[1] 0
Code
res
Output
$n
[1] 7
$count
$count$Female
[1] 2
$count$Male
[1] 2
$count$Unknown
[1] 2
$count$`NA`
[1] 1
$count_fraction
$count_fraction$Female
[1] 2.0000000 0.2857143
$count_fraction$Male
[1] 2.0000000 0.2857143
$count_fraction$Unknown
[1] 2.0000000 0.2857143
$count_fraction$`NA`
[1] 1.0000000 0.1428571
$fraction
$fraction$Female
num denom
2 7
$fraction$Male
num denom
2 7
$fraction$Unknown
num denom
2 7
$fraction$`NA`
num denom
1 7
$n_blq
[1] 0
Code
res
Output
$n
[1] 9
$count
$count$Female
[1] 2
$count$Male
[1] 3
$count$Unknown
[1] 4
$count_fraction
$count_fraction$Female
[1] 2.0000000 0.2222222
$count_fraction$Male
[1] 3.0000000 0.3333333
$count_fraction$Unknown
[1] 4.0000000 0.4444444
$fraction
$fraction$Female
num denom
2 9
$fraction$Male
num denom
3 9
$fraction$Unknown
num denom
4 9
$n_blq
[1] 0
Code
res
Output
$n
[1] 0
$count
$count$a
[1] 0
$count$b
[1] 0
$count$c
[1] 0
$count_fraction
$count_fraction$a
[1] 0 0
$count_fraction$b
[1] 0 0
$count_fraction$c
[1] 0 0
$fraction
$fraction$a
num denom
0 0
$fraction$b
num denom
0 0
$fraction$c
num denom
0 0
$n_blq
[1] 0
Code
res
Output
$n
[1] 9
$count
$count$Female
[1] 2
$count$Male
[1] 3
$count$Unknown
[1] 4
$count_fraction
$count_fraction$Female
[1] 2.0 0.1
$count_fraction$Male
[1] 3.00 0.15
$count_fraction$Unknown
[1] 4.0 0.2
$fraction
$fraction$Female
num denom
2 20
$fraction$Male
num denom
3 20
$fraction$Unknown
num denom
4 20
$n_blq
[1] 0
Code
res
Output
$n
[1] 9
$count
$count$Female
[1] 2
$count$Male
[1] 3
$count$Unknown
[1] 4
$count_fraction
$count_fraction$Female
[1] 2.00000000 0.06666667
$count_fraction$Male
[1] 3.0 0.1
$count_fraction$Unknown
[1] 4.0000000 0.1333333
$fraction
$fraction$Female
num denom
2 30
$fraction$Male
num denom
3 30
$fraction$Unknown
num denom
4 30
$n_blq
[1] 0
Code
res
Output
$n
[1] 10
$count
$count$Female
[1] 2
$count$Male
[1] 3
$count$Unknown
[1] 4
$count$`NA`
[1] 1
$count_fraction
$count_fraction$Female
[1] 2.0 0.2
$count_fraction$Male
[1] 3.0 0.3
$count_fraction$Unknown
[1] 4.0 0.4
$count_fraction$`NA`
[1] 1.0 0.1
$fraction
$fraction$Female
num denom
2 10
$fraction$Male
num denom
3 10
$fraction$Unknown
num denom
4 10
$fraction$`NA`
num denom
1 10
$n_blq
[1] 0
Code
res
Output
$n
[1] 6
$count
[1] 4
$count_fraction
[1] 4.0000000 0.6666667
$n_blq
[1] 0
Code
res
Output
$n
[1] 0
$count
[1] 0
$count_fraction
[1] 0 0
$n_blq
[1] 0
Code
res
Output
$n
[1] 6
$count
[1] 4
$count_fraction
[1] 4.0000000 0.6666667
$n_blq
[1] 0
Code
res
Output
$n
[1] 8
$count
[1] 4
$count_fraction
[1] 4.0 0.5
$n_blq
[1] 0
Code
res
Output
RowsVerticalSection (in_rows) object print method:
----------------------------
row_name formatted_cell indent_mod row_label
1 n 10 0 n
2 Sum 1.3 0 Sum
3 Mean 0.1 0 Mean
4 SD 0.8 0 SD
5 SE 0.2 0 SE
6 Mean (SD) 0.1 (0.8) 0 Mean (SD)
7 Mean (SE) 0.1 (0.2) 0 Mean (SE)
8 Mean 95% CI (-0.43, 0.69) 0 Mean 95% CI
9 Mean -/+ 1xSE (-0.11, 0.38) 0 Mean -/+ 1xSE
10 Mean -/+ 1xSD (-0.65, 0.91) 0 Mean -/+ 1xSD
11 Mean p-value (H0: mean = 0) 0.6052 0 Mean p-value (H0: mean = 0)
12 Median 0.3 0 Median
13 Median Absolute Deviation -0.0 0 Median Absolute Deviation
14 Median 95% CI (-0.82, 0.74) 0 Median 95% CI
15 25% and 75%-ile -0.6 - 0.6 0 25% and 75%-ile
16 IQR 1.2 0 IQR
17 Min - Max -0.8 - 1.6 0 Min - Max
18 Minimum -0.8 0 Minimum
19 Maximum 1.6 0 Maximum
20 Median (Min - Max) 0.3 (-0.8 - 1.6) 0 Median (Min - Max)
21 CV (%) 590.4 0 CV (%)
22 Geometric Mean NA 0 Geometric Mean
23 Geometric Mean 95% CI NA 0 Geometric Mean 95% CI
24 CV % Geometric Mean NA 0 CV % Geometric Mean
Code
res
Output
RowsVerticalSection (in_rows) object print method:
----------------------------
row_name formatted_cell indent_mod row_label
1 n 5 0 n
2 a 3 0 a
3 b 1 0 b
4 c 1 0 c
5 a 3 (60%) 0 a
6 b 1 (20%) 0 b
7 c 1 (20%) 0 c
8 a 3 (60.0%) 0 a
9 b 1 (20.0%) 0 b
10 c 1 (20.0%) 0 c
11 a 3/5 (60.0%) 0 a
12 b 1/5 (20.0%) 0 b
13 c 1/5 (20.0%) 0 c
14 n_blq 0 0 n_blq
Code
res
Output
RowsVerticalSection (in_rows) object print method:
----------------------------
row_name formatted_cell indent_mod row_label
1 n 4 0 n
2 A 2 0 A
3 B 1 0 B
4 C 1 0 C
5 A 2 (50%) 0 A
6 B 1 (25%) 0 B
7 C 1 (25%) 0 C
8 A 2 (50.0%) 0 A
9 B 1 (25.0%) 0 B
10 C 1 (25.0%) 0 C
11 A 2/4 (50.0%) 0 A
12 B 1/4 (25.0%) 0 B
13 C 1/4 (25.0%) 0 C
14 n_blq 0 0 n_blq
Code
res
Output
RowsVerticalSection (in_rows) object print method:
----------------------------
row_name formatted_cell indent_mod row_label
1 n 5 0 n
2 count 3 0 count
3 count_fraction 3 (60%) 0 count_fraction
4 count_fraction 3 (60.0%) 0 count_fraction
5 fraction 0 fraction
6 n_blq 0 0 n_blq
Code
res
Output
RowsVerticalSection (in_rows) object print method:
----------------------------
row_name formatted_cell indent_mod row_label
1 std. dev 1 3 std. dev
2 Median 95% CI -0.62 - 1.12 3 Median 95% CI
Code
res
Output
RowsVerticalSection (in_rows) object print method:
----------------------------
row_name formatted_cell indent_mod row_label
1 number of records 5.00 -1 number of records
2 a 2 5 a
3 b 1 5 b
4 c 1 5 c
5 NA 1 5 NA
6 a 2 (40%) 0 a
7 b 1 (20%) 0 b
8 c 1 (20%) 0 c
9 NA 1 (20%) 0 NA
10 a 2 (40.0%) 0 a
11 b 1 (20.0%) 0 b
12 c 1 (20.0%) 0 c
13 NA 1 (20.0%) 0 NA
14 a 2/5 (40.0%) 0 a
15 b 1/5 (20.0%) 0 b
16 c 1/5 (20.0%) 0 c
17 NA 1/5 (20.0%) 0 NA
18 n_blq 0 0 n_blq
Code
res
Output
RowsVerticalSection (in_rows) object print method:
----------------------------
row_name formatted_cell indent_mod row_label
1 n 10 0 n
2 Sum 51.3 0 Sum
3 Mean 5.1 0 Mean
4 SD 0.8 0 SD
5 SE 0.2 0 SE
6 Mean (SD) 5.1 (0.8) 0 Mean (SD)
7 Mean (SE) 5.1 (0.2) 0 Mean (SE)
8 Mean 95% CI (4.57, 5.69) 0 Mean 95% CI
9 Mean -/+ 1xSE (4.89, 5.38) 0 Mean -/+ 1xSE
10 Mean -/+ 1xSD (4.35, 5.91) 0 Mean -/+ 1xSD
11 Mean p-value (H0: mean = 0) <0.0001 0 Mean p-value (H0: mean = 0)
12 Median 5.3 0 Median
13 Median Absolute Deviation -0.0 0 Median Absolute Deviation
14 Median 95% CI (4.18, 5.74) 0 Median 95% CI
15 25% and 75%-ile 4.4 - 5.6 0 25% and 75%-ile
16 IQR 1.2 0 IQR
17 Min - Max 4.2 - 6.6 0 Min - Max
18 Minimum 4.2 0 Minimum
19 Maximum 6.6 0 Maximum
20 Median (Min - Max) 5.3 (4.2 - 6.6) 0 Median (Min - Max)
21 CV (%) 15.2 0 CV (%)
22 Geometric Mean 5.1 0 Geometric Mean
23 Geometric Mean 95% CI (4.56, 5.66) 0 Geometric Mean 95% CI
24 CV % Geometric Mean 15.2 0 CV % Geometric Mean
25 p-value (t-test) <0.0001 0 p-value (t-test)
Code
res
Output
RowsVerticalSection (in_rows) object print method:
----------------------------
row_name formatted_cell indent_mod row_label
1 n 5 0 n
2 a 3 0 a
3 b 1 0 b
4 c 1 0 c
5 a 3 (60%) 0 a
6 b 1 (20%) 0 b
7 c 1 (20%) 0 c
8 a 3 (60.0%) 0 a
9 b 1 (20.0%) 0 b
10 c 1 (20.0%) 0 c
11 a 3/5 (60.0%) 0 a
12 b 1/5 (20.0%) 0 b
13 c 1/5 (20.0%) 0 c
14 n_blq 0 0 n_blq
15 p-value (chi-squared test) 0.9560 0 p-value (chi-squared test)
Code
res
Output
RowsVerticalSection (in_rows) object print method:
----------------------------
row_name formatted_cell indent_mod row_label
1 n 4 0 n
2 A 2 0 A
3 B 1 0 B
4 C 1 0 C
5 A 2 (50%) 0 A
6 B 1 (25%) 0 B
7 C 1 (25%) 0 C
8 A 2 (50.0%) 0 A
9 B 1 (25.0%) 0 B
10 C 1 (25.0%) 0 C
11 A 2/4 (50.0%) 0 A
12 B 1/4 (25.0%) 0 B
13 C 1/4 (25.0%) 0 C
14 n_blq 0 0 n_blq
15 p-value (chi-squared test) 0.9074 0 p-value (chi-squared test)
Code
res
Output
RowsVerticalSection (in_rows) object print method:
----------------------------
row_name formatted_cell indent_mod row_label
1 n 5 0 n
2 count 3 0 count
3 count_fraction 3 (60%) 0 count_fraction
4 count_fraction 3 (60.0%) 0 count_fraction
5 fraction 0 fraction
6 n_blq 0 0 n_blq
7 p-value (chi-squared test) 0.8091 0 p-value (chi-squared test)
Code
res
Output
RowsVerticalSection (in_rows) object print method:
----------------------------
row_name formatted_cell indent_mod row_label
1 pvalue <0.0001 3 pvalue
2 Median 95% CI -0.41 - 1.10 3 Median 95% CI
Code
res
Output
RowsVerticalSection (in_rows) object print method:
----------------------------
row_name formatted_cell indent_mod row_label
1 number of records 5.00 -1 number of records
2 a 2 5 a
3 b 1 5 b
4 c 1 5 c
5 NA 1 5 NA
6 a 2 (40%) 0 a
7 b 1 (20%) 0 b
8 c 1 (20%) 0 c
9 NA 1 (20%) 0 NA
10 a 2 (40.0%) 0 a
11 b 1 (20.0%) 0 b
12 c 1 (20.0%) 0 c
13 NA 1 (20.0%) 0 NA
14 a 2/5 (40.0%) 0 a
15 b 1/5 (20.0%) 0 b
16 c 1/5 (20.0%) 0 c
17 NA 1/5 (20.0%) 0 NA
18 n_blq 0 0 n_blq
19 p-value (chi-squared test) 0.8254 0 p-value (chi-squared test)
analyze_vars
works with healthy input, default na.rm = TRUE
.Code
res
Output
all obs
—————————————————————
n 4
Mean (SD) 2.5 (1.3)
Median 2.5
Min - Max 1.0 - 4.0
analyze_vars
works with healthy input, and control function.Code
res
Output
all obs
——————————————————————————————
n 9
Mean (SD) 5.0 (2.7)
Mean (SE) 5.0 (0.9)
Mean 90% CI (3.30, 6.70)
10% and 90%-ile 1.0 - 9.0
analyze_vars
works with healthy input, alternative na.rm = FALSE
Code
res
Output
all obs
———————————————————
n 6
Mean (SD) NA
Median NA
Min - Max NA
analyze_vars
works with healthy factor inputCode
res
Output
all obs
—————————————
n 3
a 2 (66.7%)
b 1 (33.3%)
analyze_vars
works with healthy factor input, alternative na.rm = FALSE
Code
res
Output
all obs
————————————
n 5
a 2 (40%)
b 1 (20%)
NA 2 (40%)
Code
res
Output
all obs
———————————————————
n 5
a 2 (40%)
b 1 (20%)
<Missing> 2 (40%)
analyze_vars
works with factors and different denominatorsCode
res
Output
A: Drug X B: Placebo C: Combination
(N=121) (N=106) (N=129)
——————————————————————————————————————————————————————————————————————————————————————
F (N=187)
n 70 56 61
ASIAN 44 (23.5%) 37 (19.8%) 40 (21.4%)
BLACK OR AFRICAN AMERICAN 18 (9.6%) 12 (6.4%) 13 (7%)
WHITE 8 (4.3%) 7 (3.7%) 8 (4.3%)
AMERICAN INDIAN OR ALASKA NATIVE 0 0 0
MULTIPLE 0 0 0
NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER 0 0 0
OTHER 0 0 0
UNKNOWN 0 0 0
M (N=169)
n 51 50 68
ASIAN 35 (20.7%) 31 (18.3%) 44 (26%)
BLACK OR AFRICAN AMERICAN 10 (5.9%) 12 (7.1%) 14 (8.3%)
WHITE 6 (3.6%) 7 (4.1%) 10 (5.9%)
AMERICAN INDIAN OR ALASKA NATIVE 0 0 0
MULTIPLE 0 0 0
NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER 0 0 0
OTHER 0 0 0
UNKNOWN 0 0 0
Code
res
Output
A: Drug X B: Placebo C: Combination
————————————————————————————————————————————————————————————————————————————————————
ASIAN
CHN 39 (49.4%) 32 (47.1%) 39 (46.4%)
USA 7 (8.9%) 9 (13.2%) 13 (15.5%)
BRA 6 (7.6%) 8 (11.8%) 6 (7.1%)
PAK 6 (7.6%) 5 (7.4%) 9 (10.7%)
NGA 9 (11.4%) 3 (4.4%) 8 (9.5%)
RUS 7 (8.9%) 4 (5.9%) 4 (4.8%)
JPN 2 (2.5%) 6 (8.8%) 3 (3.6%)
GBR 1 (1.3%) 1 (1.5%) 1 (1.2%)
CAN 2 (2.5%) 0 1 (1.2%)
CHE 0 0 0
BLACK OR AFRICAN AMERICAN
CHN 14 (50%) 10 (41.7%) 18 (66.7%)
USA 4 (14.3%) 3 (12.5%) 3 (11.1%)
BRA 3 (10.7%) 4 (16.7%) 1 (3.7%)
PAK 1 (3.6%) 2 (8.3%) 2 (7.4%)
NGA 0 1 (4.2%) 1 (3.7%)
RUS 1 (3.6%) 1 (4.2%) 0
JPN 3 (10.7%) 0 1 (3.7%)
GBR 1 (3.6%) 2 (8.3%) 1 (3.7%)
CAN 1 (3.6%) 1 (4.2%) 0
CHE 0 0 0
WHITE
CHN 9 (64.3%) 6 (42.9%) 12 (66.7%)
USA 2 (14.3%) 2 (14.3%) 1 (5.6%)
BRA 0 1 (7.1%) 0
PAK 1 (7.1%) 1 (7.1%) 1 (5.6%)
NGA 1 (7.1%) 1 (7.1%) 0
RUS 1 (7.1%) 0 2 (11.1%)
JPN 0 2 (14.3%) 1 (5.6%)
GBR 0 0 0
CAN 0 1 (7.1%) 1 (5.6%)
CHE 0 0 0
AMERICAN INDIAN OR ALASKA NATIVE
CHN 0 0 0
USA 0 0 0
BRA 0 0 0
PAK 0 0 0
NGA 0 0 0
RUS 0 0 0
JPN 0 0 0
GBR 0 0 0
CAN 0 0 0
CHE 0 0 0
MULTIPLE
CHN 0 0 0
USA 0 0 0
BRA 0 0 0
PAK 0 0 0
NGA 0 0 0
RUS 0 0 0
JPN 0 0 0
GBR 0 0 0
CAN 0 0 0
CHE 0 0 0
NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER
CHN 0 0 0
USA 0 0 0
BRA 0 0 0
PAK 0 0 0
NGA 0 0 0
RUS 0 0 0
JPN 0 0 0
GBR 0 0 0
CAN 0 0 0
CHE 0 0 0
OTHER
CHN 0 0 0
USA 0 0 0
BRA 0 0 0
PAK 0 0 0
NGA 0 0 0
RUS 0 0 0
JPN 0 0 0
GBR 0 0 0
CAN 0 0 0
CHE 0 0 0
UNKNOWN
CHN 0 0 0
USA 0 0 0
BRA 0 0 0
PAK 0 0 0
NGA 0 0 0
RUS 0 0 0
JPN 0 0 0
GBR 0 0 0
CAN 0 0 0
CHE 0 0 0
analyze_vars
works with logical inputCode
res
Output
all obs
————————————————————————
n 5
count_fraction 3 (60%)
analyze_vars
works with healthy logical input, alternative na.rm = FALSE
Code
res
Output
all obs
———————————————
n 5
FALSE 1 (20%)
TRUE 2 (40%)
NA 2 (40%)
Code
res
Output
all obs
———————————————————
n 5
FALSE 1 (20%)
TRUE 2 (40%)
<Missing> 2 (40%)
analyze_vars
works with empty named numeric variablesCode
res
Output
a b c
——————————————————————————————————————
n 0 2 2
Mean (SD) NA 3.5 (0.7) 5.5 (0.7)
Median NA 3.5 5.5
Min - Max NA 3.0 - 4.0 5.0 - 6.0
Code
res
Output
A B C
———————————————————————————————————————
V1
n 2 1 0
Mean (SD) 7.5 (2.1) 3.0 (-) -
Median 7.5 3.0 -
Min - Max 6.0 - 9.0 3.0 - 3.0 -
V2
n 2 1 0
Mean (SD) 6.5 (2.1) 2.0 (-) -
Median 6.5 2.0 -
Min - Max 5.0 - 8.0 2.0 - 2.0 -
V3
n 2 1 0
Mean (SD) 5.5 (2.1) 1.0 (-) -
Median 5.5 1.0 -
Min - Max 4.0 - 7.0 1.0 - 1.0 -
Code
res
Output
$conf_level
[1] 0.9
$quantiles
[1] 0.1 0.9
$quantile_type
[1] 2
$test_mean
[1] 0
Code
res
Output
all obs
—————————————————————————————
n 5
Mean 1.4
Mean (SD) 1.44042 (1.91481)
Min - Max 0.0010 - 4.0000
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.