survival_timepoint | R Documentation |
The analyze function surv_timepoint()
creates a layout element to analyze patient survival rates and difference
of survival rates between groups at a given time point. The primary analysis variable vars
is the time variable.
Other required inputs are time_point
, the numeric time point of interest, and is_event
, a variable that
indicates whether or not an event has occurred. The method
argument is used to specify whether you want to analyze
survival estimations ("surv"
), difference in survival with the control ("surv_diff"
), or both of these
("both"
).
surv_timepoint(
lyt,
vars,
time_point,
is_event,
control = control_surv_timepoint(),
method = c("surv", "surv_diff", "both"),
na_str = default_na_str(),
nested = TRUE,
...,
table_names_suffix = "",
var_labels = "Time",
show_labels = "visible",
.stats = c("pt_at_risk", "event_free_rate", "rate_ci", "rate_diff", "rate_diff_ci",
"ztest_pval"),
.formats = NULL,
.labels = NULL,
.indent_mods = if (method == "both") {
c(rate_diff = 1L, rate_diff_ci = 2L,
ztest_pval = 2L)
} else {
c(rate_diff_ci = 1L, ztest_pval = 1L)
}
)
s_surv_timepoint(
df,
.var,
time_point,
is_event,
control = control_surv_timepoint()
)
a_surv_timepoint(
df,
.var,
time_point,
is_event,
control = control_surv_timepoint()
)
s_surv_timepoint_diff(
df,
.var,
.ref_group,
.in_ref_col,
time_point,
control = control_surv_timepoint(),
...
)
a_surv_timepoint_diff(
df,
.var,
.ref_group,
.in_ref_col,
time_point,
control = control_surv_timepoint(),
...
)
lyt |
( |
vars |
( |
time_point |
( |
is_event |
( |
control |
(
|
method |
( |
na_str |
( |
nested |
( |
... |
additional arguments for the lower level functions. |
table_names_suffix |
( |
var_labels |
( |
show_labels |
( |
.stats |
( |
.formats |
(named |
.labels |
(named |
.indent_mods |
(named |
df |
( |
.var |
( |
.ref_group |
( |
.in_ref_col |
( |
surv_timepoint()
returns a layout object suitable for passing to further layouting functions,
or to rtables::build_table()
. Adding this function to an rtable
layout will add formatted rows containing
the statistics from s_surv_timepoint()
and/or s_surv_timepoint_diff()
to the table layout depending on
the value of method
.
s_surv_timepoint()
returns the statistics:
pt_at_risk
: Patients remaining at risk.
event_free_rate
: Event-free rate (%).
rate_se
: Standard error of event free rate.
rate_ci
: Confidence interval for event free rate.
a_surv_timepoint()
returns the corresponding list with formatted rtables::CellValue()
.
s_surv_timepoint_diff()
returns the statistics:
rate_diff
: Event-free rate difference between two groups.
rate_diff_ci
: Confidence interval for the difference.
ztest_pval
: p-value to test the difference is 0.
a_surv_timepoint_diff()
returns the corresponding list with formatted rtables::CellValue()
.
surv_timepoint()
: Layout-creating function which can take statistics function arguments
and additional format arguments. This function is a wrapper for rtables::analyze()
.
s_surv_timepoint()
: Statistics function which analyzes survival rate.
a_surv_timepoint()
: Formatted analysis function which is used as afun
in surv_timepoint()
when method = "surv"
.
s_surv_timepoint_diff()
: Statistics function which analyzes difference between two survival rates.
a_surv_timepoint_diff()
: Formatted analysis function which is used as afun
in surv_timepoint()
when method = "surv_diff"
.
library(dplyr)
adtte_f <- tern_ex_adtte %>%
filter(PARAMCD == "OS") %>%
mutate(
AVAL = day2month(AVAL),
is_event = CNSR == 0
)
# Survival at given time points.
basic_table() %>%
split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
add_colcounts() %>%
surv_timepoint(
vars = "AVAL",
var_labels = "Months",
is_event = "is_event",
time_point = 7
) %>%
build_table(df = adtte_f)
# Difference in survival at given time points.
basic_table() %>%
split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
add_colcounts() %>%
surv_timepoint(
vars = "AVAL",
var_labels = "Months",
is_event = "is_event",
time_point = 9,
method = "surv_diff",
.indent_mods = c("rate_diff" = 0L, "rate_diff_ci" = 2L, "ztest_pval" = 2L)
) %>%
build_table(df = adtte_f)
# Survival and difference in survival at given time points.
basic_table() %>%
split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
add_colcounts() %>%
surv_timepoint(
vars = "AVAL",
var_labels = "Months",
is_event = "is_event",
time_point = 9,
method = "both"
) %>%
build_table(df = adtte_f)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.