| tidy_coxreg | R Documentation |
## S3 method for class 'summary.coxph'
tidy(x, ...)
## S3 method for class 'coxreg.univar'
tidy(x, ...)
## S3 method for class 'coxreg.multivar'
tidy(x, ...)
x |
( |
... |
additional arguments for the lower level functions. |
broom::tidy() returns:
For summary.coxph objects, a data.frame with columns: Pr(>|z|), exp(coef), exp(-coef), lower .95,
upper .95, level, and n.
For coxreg.univar objects, a data.frame with columns: effect, term, term_label, level, n, hr,
lcl, ucl, pval, and ci.
For coxreg.multivar objects, a data.frame with columns: term, pval, term_label, hr, lcl, ucl,
level, and ci.
tidy(summary.coxph): Custom tidy method for survival::coxph() summary results.
Tidy the survival::coxph() results into a data.frame to extract model results.
tidy(coxreg.univar): Custom tidy method for a univariate Cox regression.
Tidy up the result of a Cox regression model fitted by fit_coxreg_univar().
tidy(coxreg.multivar): Custom tidy method for a multivariate Cox regression.
Tidy up the result of a Cox regression model fitted by fit_coxreg_multivar().
cox_regression
library(survival)
library(broom)
set.seed(1, kind = "Mersenne-Twister")
dta_bladder <- with(
data = bladder[bladder$enum < 5, ],
data.frame(
time = stop,
status = event,
armcd = as.factor(rx),
covar1 = as.factor(enum),
covar2 = factor(
sample(as.factor(enum)),
levels = 1:4, labels = c("F", "F", "M", "M")
)
)
)
labels <- c("armcd" = "ARM", "covar1" = "A Covariate Label", "covar2" = "Sex (F/M)")
formatters::var_labels(dta_bladder)[names(labels)] <- labels
dta_bladder$age <- sample(20:60, size = nrow(dta_bladder), replace = TRUE)
formula <- "survival::Surv(time, status) ~ armcd + covar1"
msum <- summary(coxph(stats::as.formula(formula), data = dta_bladder))
tidy(msum)
## Cox regression: arm + 1 covariate.
mod1 <- fit_coxreg_univar(
variables = list(
time = "time", event = "status", arm = "armcd",
covariates = "covar1"
),
data = dta_bladder,
control = control_coxreg(conf_level = 0.91)
)
## Cox regression: arm + 1 covariate + interaction, 2 candidate covariates.
mod2 <- fit_coxreg_univar(
variables = list(
time = "time", event = "status", arm = "armcd",
covariates = c("covar1", "covar2")
),
data = dta_bladder,
control = control_coxreg(conf_level = 0.91, interaction = TRUE)
)
tidy(mod1)
tidy(mod2)
multivar_model <- fit_coxreg_multivar(
variables = list(
time = "time", event = "status", arm = "armcd",
covariates = c("covar1", "covar2")
),
data = dta_bladder
)
broom::tidy(multivar_model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.