| AIC.tfm | R Documentation |
Computes Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC) for transfer function models.
## S3 method for class 'tfm'
AIC(object, ..., k = 2)
## S3 method for class 'tfm'
BIC(object, ...)
object |
A fitted |
... |
Additional |
k |
Numeric. Penalty per parameter. Default is 2 for AIC.
Use |
AIC = -2*logLik + k*npar, where npar is the number of parameters. Lower values indicate better fit penalized for complexity.
If one model: numeric value of AIC/BIC. If multiple models: data frame with columns df (degrees of freedom) and AIC for each model.
logLik.tfm, BIC.tfm
## Not run:
model1 <- tfm(output, inputs = tf1, noise = noise1)
model2 <- tfm(output, inputs = tf2, noise = noise2)
# Single model AIC
AIC(model1)
# Compare models
AIC(model1, model2)
# BIC
BIC(model1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.