tfarima-package | R Documentation |
The tfarima package provides classes and methods to build customized transfer function and ARIMA models with multiple operators and parameter restrictions. The package also includes functions for model identification, model estimation (exact or conditional maximum likelihood), model diagnostic checking, automatic outlier detection, calendar effects, forecasting and seasonal adjustment.
Jose Luis Gallego jose.gallego@unican.es
Bell, W.R. and Hillmer, S.C. (1983) Modeling Time Series with Calendar Variation, Journal of the American Statistical Association, Vol. 78, No. 383, pp. 526-534.
Box, G.E., Jenkins, G.M., Reinsel, G.C. and Ljung, G.M. (2015) Time Series Analysis: Forecasting and Control. John Wiley & Sons, Hoboken.
Box, G.E.P., Pierce, D.A. and Newbold, D. A. (1987) Estimating Trend and Growth Rates in Seasonal Time Series, Journal of the American Statistical Association, Vol. 82, No. 397, pp. 276-282.
Box, G.E.P. and Tiao, G.C. (1975) “Intervention Analysis with Applications to Economic and Environmental Problems”, Journal of the American Statistical Association, Vol. 70, No. 349, pp. 70-79.
Chen, C. and Liu, L. (1993) Joint Estimation of Model Parameters and Outlier Effects in Time Series, Journal of the American Statistical Association, Vol. 88, No. 421, pp. 284-297
Thompson, H. E. and Tiao, G. C. (1971) "Analysis of Telephone Data: A Case Study of Forecasting Seasonal Time Series," Bell Journal of Economics, The RAND Corporation, vol. 2(2), pages 515-541, Autumn.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.