| lagpol | R Documentation |
lagpol creates a lag polynomial of the form:
(1 - coef_1 B^s - ... - coef_d B^{sd})^p
This class of lag polynomials is defined by:
the base lag polynomial 1 - coef_1 B^s - ... - coef_d B^{sd},
the exponent 'p' of the base lag polynomial (default is 'p = 1'),
the spacing parameter 's' in sparse lag polynomials (default is 's = 1'),
the vector of 'd' coefficients 'c(coef_1, ..., coef_d)', which can be mathematical expresions dependent on 'k' parameters 'c(param_1, ..., param_k)'.
lagpol(param = NULL, s = 1, p = 1, lags = NULL, coef = NULL)
param |
a vector/list of named parameters. These parameters can be used within the coefficient expressions. |
s |
an integer specifying the lag spacing or seasonal period. |
p |
an integer specifying the exponent applied to the base lag polynomial. |
lags |
an optional vector of lags for sparse polynomials. If |
coef |
an optional vector of mathematical expressions defining the
coefficients of the lag polynomial. If |
lagpol An object of class 'lagpol' with the following
components:
coefvector of coefficients c(coef_1, ..., coef_p) provided to create the lag polynomial.
polbase lag polynomial vector:
1 - \text{coef}_1 B^s - \dots - \text{coef}_d B^{sd}.
Pollag polynomial raised to the power 'p'. If 'p = 1', this equals 'pol'.
# Simple AR(1) lag polynomial: 1 - 0.8B
lagpol(param = c(phi = 0.8))
# AR(2) lag polynomial with seasonal lag s = 4: 1 - 1.2B^4 + 0.6B^8
lagpol(param = c(phi1 = 1.2, phi2 = -0.6), s = 4)
# Integration operator squared: (1 - B)^2 = 1 - 2B + B^2
lagpol(param = c(delta = 1), p = 2)
# Lag polynomial using explicit coefficients
lagpol(coef = c("1"), p = 2) # (1 - B)^2 = 1 - 2B + B^2
# Custom coefficients defined by mathematical expressions
lagpol(param = c(theta = 0.8), coef = c("2*cos(pi/6)*sqrt(theta)", "-theta"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.