| fit.FeatureSpec | R Documentation |
This function will fit the specification. Depending
on the steps added to the specification it will compute
for example, the levels of categorical features, normalization
constants, etc.
## S3 method for class 'FeatureSpec'
fit(object, dataset = NULL, ...)
object |
A feature specification created with |
dataset |
(Optional) A TensorFlow dataset. If |
... |
(unused) |
a fitted FeatureSpec object.
feature_spec() to initialize the feature specification.
dataset_use_spec() to create a tensorflow dataset prepared to modeling.
steps to a list of all implemented steps.
Other Feature Spec Functions:
dataset_use_spec(),
feature_spec(),
step_bucketized_column(),
step_categorical_column_with_hash_bucket(),
step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(),
step_categorical_column_with_vocabulary_list(),
step_crossed_column(),
step_embedding_column(),
step_indicator_column(),
step_numeric_column(),
step_remove_column(),
step_shared_embeddings_column(),
steps
## Not run:
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)
# use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%
step_numeric_column(age)
spec_fit <- fit(spec)
spec_fit
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.