mcmc_uncalibrated_langevin | R Documentation |
The class generates a Langevin proposal using _euler_method
function and
also computes helper UncalibratedLangevinKernelResults
for the next
iteration.
Warning: this kernel will not result in a chain which converges to the
target_log_prob
. To get a convergent MCMC, use
MetropolisAdjustedLangevinAlgorithm(...)
or MetropolisHastings(UncalibratedLangevin(...))
.
mcmc_uncalibrated_langevin( target_log_prob_fn, step_size, volatility_fn = NULL, parallel_iterations = 10, compute_acceptance = TRUE, seed = NULL, name = NULL )
target_log_prob_fn |
Function which takes an argument like
|
step_size |
|
volatility_fn |
function which takes an argument like
|
parallel_iterations |
the number of coordinates for which the gradients of
the volatility matrix |
compute_acceptance |
logical indicating whether to compute the
Metropolis log-acceptance ratio used to construct |
seed |
integer to seed the random number generator. |
name |
String prefixed to Ops created by this function.
Default value: |
list of
next_state
(Tensor or Python list of Tensor
s representing the state(s)
of the Markov chain(s) at each result step. Has same shape as
and current_state
.) and
kernel_results
(collections$namedtuple
of internal calculations used to
'advance the chain).
Other mcmc_kernels:
mcmc_dual_averaging_step_size_adaptation()
,
mcmc_hamiltonian_monte_carlo()
,
mcmc_metropolis_adjusted_langevin_algorithm()
,
mcmc_metropolis_hastings()
,
mcmc_no_u_turn_sampler()
,
mcmc_random_walk_metropolis()
,
mcmc_replica_exchange_mc()
,
mcmc_simple_step_size_adaptation()
,
mcmc_slice_sampler()
,
mcmc_transformed_transition_kernel()
,
mcmc_uncalibrated_hamiltonian_monte_carlo()
,
mcmc_uncalibrated_random_walk()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.