View source: R/sts-functions.R
| sts_sample_uniform_initial_state | R Documentation |
[-2, 2] distribution in unconstrained space.Initialize from a uniform [-2, 2] distribution in unconstrained space.
sts_sample_uniform_initial_state( parameter, return_constrained = TRUE, init_sample_shape = list(), seed = NULL )
parameter |
|
return_constrained |
if |
init_sample_shape |
|
seed |
integer to seed the random number generator. |
uniform_initializer Tensor of shape
concat([init_sample_shape, parameter.prior.batch_shape, transformed_event_shape]), where
transformed_event_shape is parameter.prior.event_shape, if
return_constrained=TRUE, and otherwise it is
parameter$bijector$inverse_event_shape(parameter$prior$event_shape).
Other sts-functions:
sts_build_factored_surrogate_posterior(),
sts_build_factored_variational_loss(),
sts_decompose_by_component(),
sts_decompose_forecast_by_component(),
sts_fit_with_hmc(),
sts_forecast(),
sts_one_step_predictive()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.