| sts_sum | R Documentation |
This class enables compositional specification of a structural time series model from basic components. Given a list of component models, it represents an additive model, i.e., a model of time series that may be decomposed into a sum of terms corresponding to the component models.
sts_sum( observed_time_series = NULL, components, constant_offset = NULL, observation_noise_scale_prior = NULL, name = NULL )
observed_time_series |
optional |
components |
|
constant_offset |
optional scalar |
observation_noise_scale_prior |
optional |
name |
string name of this model component; used as |
Formally, the additive model represents a random process
g[t] = f1[t] + f2[t] + ... + fN[t] + eps[t], where the f's are the
random processes represented by the components, and
eps[t] ~ Normal(loc=0, scale=observation_noise_scale) is an observation
noise term. See the AdditiveStateSpaceModel documentation for mathematical details.
This model inherits the parameters (with priors) of its components, and
adds an observation_noise_scale parameter governing the level of noise in
the observed time series.
an instance of StructuralTimeSeries.
For usage examples see sts_fit_with_hmc(), sts_forecast(), sts_decompose_by_component().
Other sts:
sts_additive_state_space_model(),
sts_autoregressive_state_space_model(),
sts_autoregressive(),
sts_constrained_seasonal_state_space_model(),
sts_dynamic_linear_regression_state_space_model(),
sts_dynamic_linear_regression(),
sts_linear_regression(),
sts_local_level_state_space_model(),
sts_local_level(),
sts_local_linear_trend_state_space_model(),
sts_local_linear_trend(),
sts_seasonal_state_space_model(),
sts_seasonal(),
sts_semi_local_linear_trend_state_space_model(),
sts_semi_local_linear_trend(),
sts_smooth_seasonal_state_space_model(),
sts_smooth_seasonal(),
sts_sparse_linear_regression()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.