tfb_scale_matvec_tri_l: Compute Y = g(X; scale) = scale @ X.

View source: R/bijectors.R

tfb_scale_matvec_tri_lR Documentation

Compute Y = g(X; scale) = scale @ X.

Description

The scale term is presumed lower-triangular and non-singular (ie, no zeros on the diagonal), which permits efficient determinant calculation (linear in matrix dimension, instead of cubic).

Usage

tfb_scale_matvec_tri_l(
  scale_tril,
  adjoint = FALSE,
  validate_args = FALSE,
  name = "scale_matvec_tril",
  dtype = NULL
)

Arguments

scale_tril

Floating-point Tensor representing the lower triangular matrix. scale_tril has shape [N1, N2, ... k, k], which represents a k x k lower triangular matrix. When NULL no scale_tril term is added to scale. The upper triangular elements above the diagonal are ignored.

adjoint

logical indicating whether to use the scale matrix as specified or its adjoint. Note that lower-triangularity is taken into account first: the region above the diagonal of scale_tril is treated as zero (irrespective of the adjoint setting). A lower-triangular input with adjoint=TRUE will behave like an upper triangular transform. Default value: FALSE.

validate_args

Logical, default FALSE. Whether to validate input with asserts. If validate_args is FALSE, and the inputs are invalid, correct behavior is not guaranteed.

name

name prefixed to Ops created by this class.

dtype

tf$DType to prefer when converting args to Tensors. Else, we fall back to a common dtype inferred from the args, finally falling back to float32.

Value

a bijector instance.

See Also

For usage examples see tfb_forward(), tfb_inverse(), tfb_inverse_log_det_jacobian().

Other bijectors: tfb_absolute_value(), tfb_affine_linear_operator(), tfb_affine_scalar(), tfb_affine(), tfb_ascending(), tfb_batch_normalization(), tfb_blockwise(), tfb_chain(), tfb_cholesky_outer_product(), tfb_cholesky_to_inv_cholesky(), tfb_correlation_cholesky(), tfb_cumsum(), tfb_discrete_cosine_transform(), tfb_expm1(), tfb_exp(), tfb_ffjord(), tfb_fill_scale_tri_l(), tfb_fill_triangular(), tfb_glow(), tfb_gompertz_cdf(), tfb_gumbel_cdf(), tfb_gumbel(), tfb_identity(), tfb_inline(), tfb_invert(), tfb_iterated_sigmoid_centered(), tfb_kumaraswamy_cdf(), tfb_kumaraswamy(), tfb_lambert_w_tail(), tfb_masked_autoregressive_default_template(), tfb_masked_autoregressive_flow(), tfb_masked_dense(), tfb_matrix_inverse_tri_l(), tfb_matvec_lu(), tfb_normal_cdf(), tfb_ordered(), tfb_pad(), tfb_permute(), tfb_power_transform(), tfb_rational_quadratic_spline(), tfb_rayleigh_cdf(), tfb_real_nvp_default_template(), tfb_real_nvp(), tfb_reciprocal(), tfb_reshape(), tfb_scale_matvec_diag(), tfb_scale_matvec_linear_operator(), tfb_scale_matvec_lu(), tfb_scale_tri_l(), tfb_scale(), tfb_shifted_gompertz_cdf(), tfb_shift(), tfb_sigmoid(), tfb_sinh_arcsinh(), tfb_sinh(), tfb_softmax_centered(), tfb_softplus(), tfb_softsign(), tfb_split(), tfb_square(), tfb_tanh(), tfb_transform_diagonal(), tfb_transpose(), tfb_weibull_cdf(), tfb_weibull()


tfprobability documentation built on Sept. 1, 2022, 5:07 p.m.