| tfb_sinh_arcsinh | R Documentation |
Y = g(X) = Sinh( (Arcsinh(X) + skewness) * tailweight )For skewness in (-inf, inf) and tailweight in (0, inf), this
transformation is a diffeomorphism of the real line (-inf, inf).
The inverse transform is X = g^{-1}(Y) = Sinh( ArcSinh(Y) / tailweight - skewness ).
The SinhArcsinh transformation of the Normal is described in
Sinh-arcsinh distributions
tfb_sinh_arcsinh( skewness = NULL, tailweight = NULL, validate_args = FALSE, name = "SinhArcsinh" )
skewness |
Skewness parameter. Float-type Tensor. Default is 0 of type float32. |
tailweight |
Tailweight parameter. Positive Tensor of same dtype as skewness and broadcastable shape. Default is 1 of type float32. |
validate_args |
Logical, default FALSE. Whether to validate input with asserts. If validate_args is FALSE, and the inputs are invalid, correct behavior is not guaranteed. |
name |
name prefixed to Ops created by this class. |
This Bijector allows a similar transformation of any distribution supported on (-inf, inf).
a bijector instance.
If skewness = 0 and tailweight = 1, this transform is the identity.
Positive (negative) skewness leads to positive (negative) skew.
positive skew means, for unimodal X centered at zero, the mode of Y is "tilted" to the right.
positive skew means positive values of Y become more likely, and negative values become less likely.
Larger (smaller) tailweight leads to fatter (thinner) tails.
Fatter tails mean larger values of |Y| become more likely.
If X is a unit Normal, tailweight < 1 leads to a distribution that is "flat" around Y = 0, and a very steep drop-off in the tails.
If X is a unit Normal, tailweight > 1 leads to a distribution more peaked at the mode with heavier tails. To see the argument about the tails, note that for |X| >> 1 and |X| >> (|skewness| * tailweight)tailweight, we have Y approx 0.5 Xtailweight e**(sign(X) skewness * tailweight).
For usage examples see tfb_forward(), tfb_inverse(), tfb_inverse_log_det_jacobian().
Other bijectors:
tfb_absolute_value(),
tfb_affine_linear_operator(),
tfb_affine_scalar(),
tfb_affine(),
tfb_ascending(),
tfb_batch_normalization(),
tfb_blockwise(),
tfb_chain(),
tfb_cholesky_outer_product(),
tfb_cholesky_to_inv_cholesky(),
tfb_correlation_cholesky(),
tfb_cumsum(),
tfb_discrete_cosine_transform(),
tfb_expm1(),
tfb_exp(),
tfb_ffjord(),
tfb_fill_scale_tri_l(),
tfb_fill_triangular(),
tfb_glow(),
tfb_gompertz_cdf(),
tfb_gumbel_cdf(),
tfb_gumbel(),
tfb_identity(),
tfb_inline(),
tfb_invert(),
tfb_iterated_sigmoid_centered(),
tfb_kumaraswamy_cdf(),
tfb_kumaraswamy(),
tfb_lambert_w_tail(),
tfb_masked_autoregressive_default_template(),
tfb_masked_autoregressive_flow(),
tfb_masked_dense(),
tfb_matrix_inverse_tri_l(),
tfb_matvec_lu(),
tfb_normal_cdf(),
tfb_ordered(),
tfb_pad(),
tfb_permute(),
tfb_power_transform(),
tfb_rational_quadratic_spline(),
tfb_rayleigh_cdf(),
tfb_real_nvp_default_template(),
tfb_real_nvp(),
tfb_reciprocal(),
tfb_reshape(),
tfb_scale_matvec_diag(),
tfb_scale_matvec_linear_operator(),
tfb_scale_matvec_lu(),
tfb_scale_matvec_tri_l(),
tfb_scale_tri_l(),
tfb_scale(),
tfb_shifted_gompertz_cdf(),
tfb_shift(),
tfb_sigmoid(),
tfb_sinh(),
tfb_softmax_centered(),
tfb_softplus(),
tfb_softsign(),
tfb_split(),
tfb_square(),
tfb_tanh(),
tfb_transform_diagonal(),
tfb_transpose(),
tfb_weibull_cdf(),
tfb_weibull()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.