tfd_gaussian_process_regression_model: Posterior predictive distribution in a conjugate GP...

View source: R/distributions.R

tfd_gaussian_process_regression_modelR Documentation

Posterior predictive distribution in a conjugate GP regression model.

Description

Posterior predictive distribution in a conjugate GP regression model.

Usage

tfd_gaussian_process_regression_model(
  kernel,
  index_points = NULL,
  observation_index_points = NULL,
  observations = NULL,
  observation_noise_variance = 0,
  predictive_noise_variance = NULL,
  mean_fn = NULL,
  jitter = 1e-06,
  validate_args = FALSE,
  allow_nan_stats = FALSE,
  name = "GaussianProcessRegressionModel"
)

Arguments

kernel

PositiveSemidefiniteKernel-like instance representing the GP's covariance function.

index_points

float Tensor representing finite (batch of) vector(s) of points in the index set over which the GP is defined. Shape has the form [b1, ..., bB, e1, f1, ..., fF] where F is the number of feature dimensions and must equal kernel$feature_ndims and e1 is the number (size) of index points in each batch (we denote it e1 to distinguish it from the numer of inducing index points, denoted e2 below). Ultimately the GaussianProcess distribution corresponds to an e1-dimensional multivariate normal. The batch shape must be broadcastable with kernel$batch_shape, the batch shape of inducing_index_points, and any batch dims yielded by mean_fn.

observation_index_points

Tensor representing finite collection, or batch of collections, of points in the index set for which some data has been observed. Shape has the form [b1, ..., bB, e, f1, ..., fF] where F is the number of feature dimensions and must equal kernel$feature_ndims, and e is the number (size) of index points in each batch. [b1, ..., bB, e] must be broadcastable with the shape of observations, and [b1, ..., bB] must be broadcastable with the shapes of all other batched parameters (kernel.batch_shape, index_points, etc). The default value is None, which corresponds to the empty set of observations, and simply results in the prior predictive model (a GP with noise of variance predictive_noise_variance).

observations

Tensor representing collection, or batch of collections, of observations corresponding to observation_index_points. Shape has the form [b1, ..., bB, e], which must be brodcastable with the batch and example shapes of observation_index_points. The batch shape [b1, ..., bB\ ] must be broadcastable with the shapes of all other batched parameters (kernel.batch_shape, index_points, etc.). The default value is None, which corresponds to the empty set of observations, and simply results in the prior predictive model (a GP with noise of variance predictive_noise_variance).

observation_noise_variance

float Tensor representing the variance of the noise in the Normal likelihood distribution of the model. May be batched, in which case the batch shape must be broadcastable with the shapes of all other batched parameters (kernel$batch_shape, index_points, etc.). Default value: 0.

predictive_noise_variance

Tensor representing the variance in the posterior predictive model. If None, we simply re-use observation_noise_variance for the posterior predictive noise. If set explicitly, however, we use this value. This allows us, for example, to omit predictive noise variance (by setting this to zero) to obtain noiseless posterior predictions of function values, conditioned on noisy observations.

mean_fn

callable that acts on index_points to produce a collection, or batch of collections, of mean values at index_points. Takes a Tensor of shape [b1, ..., bB, f1, ..., fF] and returns a Tensor whose shape is broadcastable with [b1, ..., bB]. Default value: None implies the constant zero function.

jitter

float scalar Tensor added to the diagonal of the covariance matrix to ensure positive definiteness of the covariance matrix. Default value: 1e-6.

validate_args

Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE.

allow_nan_stats

Logical, default TRUE. When TRUE, statistics (e.g., mean, mode, variance) use the value NaN to indicate the result is undefined. When FALSE, an exception is raised if one or more of the statistic's batch members are undefined.

name

name prefixed to Ops created by this class.

Value

a distribution instance.

See Also

For usage examples see e.g. tfd_sample(), tfd_log_prob(), tfd_mean().

Other distributions: tfd_autoregressive(), tfd_batch_reshape(), tfd_bates(), tfd_bernoulli(), tfd_beta_binomial(), tfd_beta(), tfd_binomial(), tfd_categorical(), tfd_cauchy(), tfd_chi2(), tfd_chi(), tfd_cholesky_lkj(), tfd_continuous_bernoulli(), tfd_deterministic(), tfd_dirichlet_multinomial(), tfd_dirichlet(), tfd_empirical(), tfd_exp_gamma(), tfd_exp_inverse_gamma(), tfd_exponential(), tfd_gamma_gamma(), tfd_gamma(), tfd_gaussian_process(), tfd_generalized_normal(), tfd_geometric(), tfd_gumbel(), tfd_half_cauchy(), tfd_half_normal(), tfd_hidden_markov_model(), tfd_horseshoe(), tfd_independent(), tfd_inverse_gamma(), tfd_inverse_gaussian(), tfd_johnson_s_u(), tfd_joint_distribution_named_auto_batched(), tfd_joint_distribution_named(), tfd_joint_distribution_sequential_auto_batched(), tfd_joint_distribution_sequential(), tfd_kumaraswamy(), tfd_laplace(), tfd_linear_gaussian_state_space_model(), tfd_lkj(), tfd_log_logistic(), tfd_log_normal(), tfd_logistic(), tfd_mixture_same_family(), tfd_mixture(), tfd_multinomial(), tfd_multivariate_normal_diag_plus_low_rank(), tfd_multivariate_normal_diag(), tfd_multivariate_normal_full_covariance(), tfd_multivariate_normal_linear_operator(), tfd_multivariate_normal_tri_l(), tfd_multivariate_student_t_linear_operator(), tfd_negative_binomial(), tfd_normal(), tfd_one_hot_categorical(), tfd_pareto(), tfd_pixel_cnn(), tfd_poisson_log_normal_quadrature_compound(), tfd_poisson(), tfd_power_spherical(), tfd_probit_bernoulli(), tfd_quantized(), tfd_relaxed_bernoulli(), tfd_relaxed_one_hot_categorical(), tfd_sample_distribution(), tfd_sinh_arcsinh(), tfd_skellam(), tfd_spherical_uniform(), tfd_student_t_process(), tfd_student_t(), tfd_transformed_distribution(), tfd_triangular(), tfd_truncated_cauchy(), tfd_truncated_normal(), tfd_uniform(), tfd_variational_gaussian_process(), tfd_vector_diffeomixture(), tfd_vector_exponential_diag(), tfd_vector_exponential_linear_operator(), tfd_vector_laplace_diag(), tfd_vector_laplace_linear_operator(), tfd_vector_sinh_arcsinh_diag(), tfd_von_mises_fisher(), tfd_von_mises(), tfd_weibull(), tfd_wishart_linear_operator(), tfd_wishart_tri_l(), tfd_wishart(), tfd_zipf()


tfprobability documentation built on Sept. 1, 2022, 5:07 p.m.