View source: R/distributions.R
tfd_pixel_cnn | R Documentation |
Pixel CNN++ (Salimans et al., 2017) models a distribution over image
data, parameterized by a neural network. It builds on Pixel CNN and
Conditional Pixel CNN, as originally proposed by
(van den Oord et al., 2016).
The model expresses the joint distribution over pixels as
the product of conditional distributions:
p(x|h) = prod{ p(x[i] | x[0:i], h) : i=0, ..., d }
, in which
p(x[i] | x[0:i], h) : i=0, ..., d
is the
probability of the i
-th pixel conditional on the pixels that preceded it in
raster order (color channels in RGB order, then left to right, then top to
bottom). h
is optional additional data on which to condition the image
distribution, such as class labels or VAE embeddings. The Pixel CNN++
network enforces the dependency structure among pixels by applying a mask to
the kernels of the convolutional layers that ensures that the values for each
pixel depend only on other pixels up and to the left.
Pixel values are modeled with a mixture of quantized logistic distributions,
which can take on a set of distinct integer values (e.g. between 0 and 255
for an 8-bit image).
Color intensity v
of each pixel is modeled as:
v ~ sum{q[i] * quantized_logistic(loc[i], scale[i]) : i = 0, ..., k }
,
in which k
is the number of mixture components and the q[i]
are the
Categorical probabilities over the components.
tfd_pixel_cnn( image_shape, conditional_shape = NULL, num_resnet = 5, num_hierarchies = 3, num_filters = 160, num_logistic_mix = 10, receptive_field_dims = c(3, 3), dropout_p = 0.5, resnet_activation = "concat_elu", use_weight_norm = TRUE, use_data_init = TRUE, high = 255, low = 0, dtype = tf$float32, name = "PixelCNN" )
image_shape |
3D |
conditional_shape |
|
num_resnet |
|
num_hierarchies |
|
num_filters |
|
num_logistic_mix |
|
receptive_field_dims |
|
dropout_p |
|
resnet_activation |
|
use_weight_norm |
|
use_data_init |
|
high |
|
low |
|
dtype |
Data type of the |
name |
|
a distribution instance.
For usage examples see e.g. tfd_sample()
, tfd_log_prob()
, tfd_mean()
.
Other distributions:
tfd_autoregressive()
,
tfd_batch_reshape()
,
tfd_bates()
,
tfd_bernoulli()
,
tfd_beta_binomial()
,
tfd_beta()
,
tfd_binomial()
,
tfd_categorical()
,
tfd_cauchy()
,
tfd_chi2()
,
tfd_chi()
,
tfd_cholesky_lkj()
,
tfd_continuous_bernoulli()
,
tfd_deterministic()
,
tfd_dirichlet_multinomial()
,
tfd_dirichlet()
,
tfd_empirical()
,
tfd_exp_gamma()
,
tfd_exp_inverse_gamma()
,
tfd_exponential()
,
tfd_gamma_gamma()
,
tfd_gamma()
,
tfd_gaussian_process_regression_model()
,
tfd_gaussian_process()
,
tfd_generalized_normal()
,
tfd_geometric()
,
tfd_gumbel()
,
tfd_half_cauchy()
,
tfd_half_normal()
,
tfd_hidden_markov_model()
,
tfd_horseshoe()
,
tfd_independent()
,
tfd_inverse_gamma()
,
tfd_inverse_gaussian()
,
tfd_johnson_s_u()
,
tfd_joint_distribution_named_auto_batched()
,
tfd_joint_distribution_named()
,
tfd_joint_distribution_sequential_auto_batched()
,
tfd_joint_distribution_sequential()
,
tfd_kumaraswamy()
,
tfd_laplace()
,
tfd_linear_gaussian_state_space_model()
,
tfd_lkj()
,
tfd_log_logistic()
,
tfd_log_normal()
,
tfd_logistic()
,
tfd_mixture_same_family()
,
tfd_mixture()
,
tfd_multinomial()
,
tfd_multivariate_normal_diag_plus_low_rank()
,
tfd_multivariate_normal_diag()
,
tfd_multivariate_normal_full_covariance()
,
tfd_multivariate_normal_linear_operator()
,
tfd_multivariate_normal_tri_l()
,
tfd_multivariate_student_t_linear_operator()
,
tfd_negative_binomial()
,
tfd_normal()
,
tfd_one_hot_categorical()
,
tfd_pareto()
,
tfd_poisson_log_normal_quadrature_compound()
,
tfd_poisson()
,
tfd_power_spherical()
,
tfd_probit_bernoulli()
,
tfd_quantized()
,
tfd_relaxed_bernoulli()
,
tfd_relaxed_one_hot_categorical()
,
tfd_sample_distribution()
,
tfd_sinh_arcsinh()
,
tfd_skellam()
,
tfd_spherical_uniform()
,
tfd_student_t_process()
,
tfd_student_t()
,
tfd_transformed_distribution()
,
tfd_triangular()
,
tfd_truncated_cauchy()
,
tfd_truncated_normal()
,
tfd_uniform()
,
tfd_variational_gaussian_process()
,
tfd_vector_diffeomixture()
,
tfd_vector_exponential_diag()
,
tfd_vector_exponential_linear_operator()
,
tfd_vector_laplace_diag()
,
tfd_vector_laplace_linear_operator()
,
tfd_vector_sinh_arcsinh_diag()
,
tfd_von_mises_fisher()
,
tfd_von_mises()
,
tfd_weibull()
,
tfd_wishart_linear_operator()
,
tfd_wishart_tri_l()
,
tfd_wishart()
,
tfd_zipf()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.