View source: R/distributions.R
tfd_student_t_process | R Documentation |
A Student's T process (TP) is an indexed collection of random variables, any finite collection of which are jointly Multivariate Student's T. While this definition applies to finite index sets, it is typically implicit that the index set is infinite; in applications, it is often some finite dimensional real or complex vector space. In such cases, the TP may be thought of as a distribution over (real- or complex-valued) functions defined over the index set.
tfd_student_t_process( df, kernel, index_points, mean_fn = NULL, jitter = 1e-06, validate_args = FALSE, allow_nan_stats = FALSE, name = "StudentTProcess" )
df |
Positive Floating-point |
kernel |
|
index_points |
|
mean_fn |
Function that acts on |
jitter |
|
validate_args |
Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE. |
allow_nan_stats |
Logical, default TRUE. When TRUE, statistics (e.g., mean, mode, variance) use the value NaN to indicate the result is undefined. When FALSE, an exception is raised if one or more of the statistic's batch members are undefined. |
name |
name prefixed to Ops created by this class. |
Just as Student's T distributions are fully specified by their degrees of freedom, location and scale, a Student's T process can be completely specified by a degrees of freedom parameter, mean function and covariance function.
Let S
denote the index set and K
the space in which each indexed random variable
takes its values (again, often R or C).
The mean function is then a map m: S -> K
, and the covariance function,
or kernel, is a positive-definite function k: (S x S) -> K
. The properties
of functions drawn from a TP are entirely dictated (up to translation) by
the form of the kernel function.
This Distribution
represents the marginal joint distribution over function
values at a given finite collection of points [x[1], ..., x[N]]
from the
index set S
. By definition, this marginal distribution is just a
multivariate Student's T distribution, whose mean is given by the vector
[ m(x[1]), ..., m(x[N]) ]
and whose covariance matrix is constructed from
pairwise applications of the kernel function to the given inputs:
| k(x[1], x[1]) k(x[1], x[2]) ... k(x[1], x[N]) | | k(x[2], x[1]) k(x[2], x[2]) ... k(x[2], x[N]) | | ... ... ... | | k(x[N], x[1]) k(x[N], x[2]) ... k(x[N], x[N]) |
For this to be a valid covariance matrix, it must be symmetric and positive
definite; hence the requirement that k
be a positive definite function
(which, by definition, says that the above procedure will yield PD matrices).
Note also we use a parameterization as suggested in Shat et al. (2014), which requires df
to be greater than 2. This allows for the covariance for any finite
dimensional marginal of the TP (a multivariate Student's T distribution) to
just be the PD matrix generated by the kernel.
Mathematical Details
The probability density function (pdf) is a multivariate Student's T whose parameters are derived from the TP's properties:
pdf(x; df, index_points, mean_fn, kernel) = MultivariateStudentT(df, loc, K) K = (df - 2) / df * (kernel.matrix(index_points, index_points) + jitter * eye(N)) loc = (x - mean_fn(index_points))^T @ K @ (x - mean_fn(index_points))
where:
df
is the degrees of freedom parameter for the TP.
index_points
are points in the index set over which the TP is defined,
mean_fn
is a callable mapping the index set to the TP's mean values,
kernel
is PositiveSemidefiniteKernel
-like and represents the covariance
function of the TP,
jitter
is added to the diagonal to ensure positive definiteness up to
machine precision (otherwise Cholesky-decomposition is prone to failure),
eye(N)
is an N-by-N identity matrix.
a distribution instance.
For usage examples see e.g. tfd_sample()
, tfd_log_prob()
, tfd_mean()
.
Other distributions:
tfd_autoregressive()
,
tfd_batch_reshape()
,
tfd_bates()
,
tfd_bernoulli()
,
tfd_beta_binomial()
,
tfd_beta()
,
tfd_binomial()
,
tfd_categorical()
,
tfd_cauchy()
,
tfd_chi2()
,
tfd_chi()
,
tfd_cholesky_lkj()
,
tfd_continuous_bernoulli()
,
tfd_deterministic()
,
tfd_dirichlet_multinomial()
,
tfd_dirichlet()
,
tfd_empirical()
,
tfd_exp_gamma()
,
tfd_exp_inverse_gamma()
,
tfd_exponential()
,
tfd_gamma_gamma()
,
tfd_gamma()
,
tfd_gaussian_process_regression_model()
,
tfd_gaussian_process()
,
tfd_generalized_normal()
,
tfd_geometric()
,
tfd_gumbel()
,
tfd_half_cauchy()
,
tfd_half_normal()
,
tfd_hidden_markov_model()
,
tfd_horseshoe()
,
tfd_independent()
,
tfd_inverse_gamma()
,
tfd_inverse_gaussian()
,
tfd_johnson_s_u()
,
tfd_joint_distribution_named_auto_batched()
,
tfd_joint_distribution_named()
,
tfd_joint_distribution_sequential_auto_batched()
,
tfd_joint_distribution_sequential()
,
tfd_kumaraswamy()
,
tfd_laplace()
,
tfd_linear_gaussian_state_space_model()
,
tfd_lkj()
,
tfd_log_logistic()
,
tfd_log_normal()
,
tfd_logistic()
,
tfd_mixture_same_family()
,
tfd_mixture()
,
tfd_multinomial()
,
tfd_multivariate_normal_diag_plus_low_rank()
,
tfd_multivariate_normal_diag()
,
tfd_multivariate_normal_full_covariance()
,
tfd_multivariate_normal_linear_operator()
,
tfd_multivariate_normal_tri_l()
,
tfd_multivariate_student_t_linear_operator()
,
tfd_negative_binomial()
,
tfd_normal()
,
tfd_one_hot_categorical()
,
tfd_pareto()
,
tfd_pixel_cnn()
,
tfd_poisson_log_normal_quadrature_compound()
,
tfd_poisson()
,
tfd_power_spherical()
,
tfd_probit_bernoulli()
,
tfd_quantized()
,
tfd_relaxed_bernoulli()
,
tfd_relaxed_one_hot_categorical()
,
tfd_sample_distribution()
,
tfd_sinh_arcsinh()
,
tfd_skellam()
,
tfd_spherical_uniform()
,
tfd_student_t()
,
tfd_transformed_distribution()
,
tfd_triangular()
,
tfd_truncated_cauchy()
,
tfd_truncated_normal()
,
tfd_uniform()
,
tfd_variational_gaussian_process()
,
tfd_vector_diffeomixture()
,
tfd_vector_exponential_diag()
,
tfd_vector_exponential_linear_operator()
,
tfd_vector_laplace_diag()
,
tfd_vector_laplace_linear_operator()
,
tfd_vector_sinh_arcsinh_diag()
,
tfd_von_mises_fisher()
,
tfd_von_mises()
,
tfd_weibull()
,
tfd_wishart_linear_operator()
,
tfd_wishart_tri_l()
,
tfd_wishart()
,
tfd_zipf()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.