tfd_variance: Variance.

View source: R/distribution-methods.R

tfd_varianceR Documentation

Variance.

Description

Variance is defined as, Var = E[(X - E[X])**2] where X is the random variable associated with this distribution, E denotes expectation, and Var$shape = batch_shape + event_shape.

Usage

tfd_variance(distribution, ...)

Arguments

distribution

The distribution being used.

...

Additional parameters passed to Python.

Value

a Tensor of shape sample_shape(x) + self$batch_shape with values of type self$dtype.

See Also

Other distribution_methods: tfd_cdf(), tfd_covariance(), tfd_cross_entropy(), tfd_entropy(), tfd_kl_divergence(), tfd_log_cdf(), tfd_log_prob(), tfd_log_survival_function(), tfd_mean(), tfd_mode(), tfd_prob(), tfd_quantile(), tfd_sample(), tfd_stddev(), tfd_survival_function()

Examples


  d <- tfd_normal(loc = c(1, 2), scale = c(1, 0.5))
  d %>% tfd_variance()


tfprobability documentation built on Sept. 1, 2022, 5:07 p.m.