View source: R/distribution-methods.R
| tfd_variance | R Documentation |
Variance is defined as, Var = E[(X - E[X])**2]
where X is the random variable associated with this distribution, E denotes expectation,
and Var$shape = batch_shape + event_shape.
tfd_variance(distribution, ...)
distribution |
The distribution being used. |
... |
Additional parameters passed to Python. |
a Tensor of shape sample_shape(x) + self$batch_shape with values of type self$dtype.
Other distribution_methods:
tfd_cdf(),
tfd_covariance(),
tfd_cross_entropy(),
tfd_entropy(),
tfd_kl_divergence(),
tfd_log_cdf(),
tfd_log_prob(),
tfd_log_survival_function(),
tfd_mean(),
tfd_mode(),
tfd_prob(),
tfd_quantile(),
tfd_sample(),
tfd_stddev(),
tfd_survival_function()
d <- tfd_normal(loc = c(1, 2), scale = c(1, 0.5)) d %>% tfd_variance()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.