View source: R/distributions.R
| tfd_vector_laplace_diag | R Documentation |
R^kThe vector laplace distribution is defined over R^k, and parameterized by
a (batch of) length-k loc vector (the means) and a (batch of) k x k
scale matrix: covariance = 2 * scale @ scale.T, where @ denotes
matrix-multiplication.
tfd_vector_laplace_diag( loc = NULL, scale_diag = NULL, scale_identity_multiplier = NULL, validate_args = FALSE, allow_nan_stats = TRUE, name = "VectorLaplaceDiag" )
loc |
Floating-point Tensor. If this is set to NULL, loc is
implicitly 0. When specified, may have shape |
scale_diag |
Non-zero, floating-point Tensor representing a diagonal
matrix added to scale. May have shape |
scale_identity_multiplier |
Non-zero, floating-point Tensor representing
a scaled-identity-matrix added to scale. May have shape
|
validate_args |
Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE. |
allow_nan_stats |
Logical, default TRUE. When TRUE, statistics (e.g., mean, mode, variance) use the value NaN to indicate the result is undefined. When FALSE, an exception is raised if one or more of the statistic's batch members are undefined. |
name |
name prefixed to Ops created by this class. |
Mathematical Details The probability density function (pdf) is,
pdf(x; loc, scale) = exp(-||y||_1) / Z y = inv(scale) @ (x - loc) Z = 2**k |det(scale)|
where:
loc is a vector in R^k,
scale is a linear operator in R^{k x k}, cov = scale @ scale.T,
Z denotes the normalization constant, and,
||y||_1 denotes the l1 norm of y, 'sum_i |y_i|.
A (non-batch) scale matrix is:
scale = diag(scale_diag + scale_identity_multiplier * ones(k))
where:
scale_diag.shape = [k], and,
scale_identity_multiplier.shape = [].
Additional leading dimensions (if any) will index batches.
If both scale_diag and scale_identity_multiplier are NULL, then
scale is the Identity matrix.
About VectorLaplace and Vector distributions in TensorFlow
The VectorLaplace is a non-standard distribution that has useful properties. The marginals Y_1, ..., Y_k are not Laplace random variables, due to the fact that the sum of Laplace random variables is not Laplace. Instead, Y is a vector whose components are linear combinations of Laplace random variables. Thus, Y lives in the vector space generated by vectors of Laplace distributions. This allows the user to decide the mean and covariance (by setting loc and scale), while preserving some properties of the Laplace distribution. In particular, the tails of Y_i will be (up to polynomial factors) exponentially decaying. To see this last statement, note that the pdf of Y_i is the convolution of the pdf of k independent Laplace random variables. One can then show by induction that distributions with exponential (up to polynomial factors) tails are closed under convolution.
a distribution instance.
For usage examples see e.g. tfd_sample(), tfd_log_prob(), tfd_mean().
Other distributions:
tfd_autoregressive(),
tfd_batch_reshape(),
tfd_bates(),
tfd_bernoulli(),
tfd_beta_binomial(),
tfd_beta(),
tfd_binomial(),
tfd_categorical(),
tfd_cauchy(),
tfd_chi2(),
tfd_chi(),
tfd_cholesky_lkj(),
tfd_continuous_bernoulli(),
tfd_deterministic(),
tfd_dirichlet_multinomial(),
tfd_dirichlet(),
tfd_empirical(),
tfd_exp_gamma(),
tfd_exp_inverse_gamma(),
tfd_exponential(),
tfd_gamma_gamma(),
tfd_gamma(),
tfd_gaussian_process_regression_model(),
tfd_gaussian_process(),
tfd_generalized_normal(),
tfd_geometric(),
tfd_gumbel(),
tfd_half_cauchy(),
tfd_half_normal(),
tfd_hidden_markov_model(),
tfd_horseshoe(),
tfd_independent(),
tfd_inverse_gamma(),
tfd_inverse_gaussian(),
tfd_johnson_s_u(),
tfd_joint_distribution_named_auto_batched(),
tfd_joint_distribution_named(),
tfd_joint_distribution_sequential_auto_batched(),
tfd_joint_distribution_sequential(),
tfd_kumaraswamy(),
tfd_laplace(),
tfd_linear_gaussian_state_space_model(),
tfd_lkj(),
tfd_log_logistic(),
tfd_log_normal(),
tfd_logistic(),
tfd_mixture_same_family(),
tfd_mixture(),
tfd_multinomial(),
tfd_multivariate_normal_diag_plus_low_rank(),
tfd_multivariate_normal_diag(),
tfd_multivariate_normal_full_covariance(),
tfd_multivariate_normal_linear_operator(),
tfd_multivariate_normal_tri_l(),
tfd_multivariate_student_t_linear_operator(),
tfd_negative_binomial(),
tfd_normal(),
tfd_one_hot_categorical(),
tfd_pareto(),
tfd_pixel_cnn(),
tfd_poisson_log_normal_quadrature_compound(),
tfd_poisson(),
tfd_power_spherical(),
tfd_probit_bernoulli(),
tfd_quantized(),
tfd_relaxed_bernoulli(),
tfd_relaxed_one_hot_categorical(),
tfd_sample_distribution(),
tfd_sinh_arcsinh(),
tfd_skellam(),
tfd_spherical_uniform(),
tfd_student_t_process(),
tfd_student_t(),
tfd_transformed_distribution(),
tfd_triangular(),
tfd_truncated_cauchy(),
tfd_truncated_normal(),
tfd_uniform(),
tfd_variational_gaussian_process(),
tfd_vector_diffeomixture(),
tfd_vector_exponential_diag(),
tfd_vector_exponential_linear_operator(),
tfd_vector_laplace_linear_operator(),
tfd_vector_sinh_arcsinh_diag(),
tfd_von_mises_fisher(),
tfd_von_mises(),
tfd_weibull(),
tfd_wishart_linear_operator(),
tfd_wishart_tri_l(),
tfd_wishart(),
tfd_zipf()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.