Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.height = 7,
fig.width = 7,
warning = FALSE,
fig.align = "center"
)
## ----setup, message = FALSE, warning = FALSE----------------------------------
library(dplyr)
library(ggplot2)
library(theft)
library(theftdlc)
## ----message = FALSE, warning = FALSE, eval = FALSE---------------------------
# theft::simData
## ----message = FALSE, warning = FALSE-----------------------------------------
head(simData)
## ----message = FALSE, warning = FALSE-----------------------------------------
feature_matrix <- calculate_features(data = simData,
feature_set = "catch22")
## ----message = FALSE, warning = FALSE-----------------------------------------
plot(feature_matrix, type = "quality")
## ----message = FALSE, warning = FALSE-----------------------------------------
plot(feature_matrix, type = "matrix", norm_method = "RobustSigmoid")
## ----message = FALSE, warning = FALSE-----------------------------------------
plot(feature_matrix, type = "violin",
feature_names = c("CO_f1ecac", "PD_PeriodicityWang_th0_01"))
## ----eval = FALSE-------------------------------------------------------------
# plot(feature_matrix, type = "violin",
# feature_names = c("CO_f1ecac", "PD_PeriodicityWang_th0_01"),
# size = 0.7, alpha = 0.9)
## ----message = FALSE, warning = FALSE-----------------------------------------
plot(feature_matrix, type = "box",
feature_names = c("CO_f1ecac", "PD_PeriodicityWang_th0_01"))
## ----message = FALSE, warning = FALSE-----------------------------------------
low_dim <- project(feature_matrix,
norm_method = "RobustSigmoid",
unit_int = TRUE,
low_dim_method = "PCA",
seed = 123)
## ----message = FALSE, warning = FALSE-----------------------------------------
plot(low_dim)
## ----message = FALSE, warning = FALSE-----------------------------------------
low_dim2 <- project(feature_matrix,
norm_method = "RobustSigmoid",
unit_int = TRUE,
low_dim_method = "tSNE",
perplexity = 10,
seed = 123)
plot(low_dim2, show_covariance = FALSE)
## ----message = FALSE, warning = FALSE-----------------------------------------
plot(feature_matrix, type = "cor")
## ----message = FALSE, warning = FALSE-----------------------------------------
feature_classifiers <- classify(feature_matrix,
by_set = FALSE,
n_resamples = 5,
use_null = TRUE)
## ----message = FALSE, warning = FALSE-----------------------------------------
myclassifier <- function(formula, data){
mod <- e1071::svm(formula, data = data, kernel = "radial", scale = FALSE,
probability = TRUE)
}
feature_classifiers_radial <- classify(feature_matrix,
classifier = myclassifier,
by_set = FALSE,
n_resamples = 5,
use_null = TRUE)
## ----message = FALSE, warning = FALSE-----------------------------------------
feature_vs_null <- compare_features(feature_classifiers,
by_set = FALSE,
hypothesis = "null")
head(feature_vs_null)
## ----message = FALSE, warning = FALSE-----------------------------------------
pairwise_features <- compare_features(feature_classifiers,
by_set = FALSE,
hypothesis = "pairwise",
p_adj = "holm")
head(pairwise_features)
## ----message = FALSE, warning = FALSE-----------------------------------------
top_10 <- feature_vs_null %>%
dplyr::slice_min(p.value, n = 10) %>%
dplyr::select(c(feature_set, original_names, p.value))
feature_matrix_filt <- feature_matrix %>%
dplyr::filter(feature_set %in% top_10$feature_set & names %in% top_10$original_names)
feature_matrix_filt <- structure(feature_matrix_filt, class = c("feature_calculations", "data.frame"))
plot(feature_matrix_filt, type = "cor")
## ----message = FALSE, warning = FALSE-----------------------------------------
plot(feature_matrix_filt,
type = "violin",
feature_names = top_10$original_names)
## ----message = FALSE, warning = FALSE-----------------------------------------
interval(feature_classifiers, by_set = FALSE)
## ----message = FALSE, warning = FALSE-----------------------------------------
feature_matrix2 <- calculate_features(data = simData,
feature_set = "catch22",
features = list("mean" = mean, "sd" = sd),
seed = 123)
set_classifiers <- classify(feature_matrix2,
by_set = TRUE,
n_resamples = 5,
use_null = TRUE)
head(set_classifiers)
## ----message = FALSE, warning = FALSE-----------------------------------------
interval_calcs <- interval(set_classifiers)
plot(interval_calcs)
## ----message = FALSE, warning = FALSE-----------------------------------------
feature_clusters <- cluster(feature_matrix, k = 6)
## ----message = FALSE, warning = FALSE-----------------------------------------
feature_clusters$Data %>%
dplyr::filter(names %in% c("CO_HistogramAMI_even_2_5",
"DN_OutlierInclude_p_001_mdrmd")) %>%
tidyr::pivot_wider(id_cols = c("id", "group", "cluster"),
names_from = "names", values_from = "values") %>%
ggplot2::ggplot(ggplot2::aes(x = CO_HistogramAMI_even_2_5,
DN_OutlierInclude_p_001_mdrmd,
colour = as.factor(cluster))) +
ggplot2::stat_ellipse(ggplot2::aes(fill = as.factor(cluster)), geom = "polygon", alpha = 0.2) +
ggplot2::geom_point() +
ggplot2::labs(colour = "Cluster") +
ggplot2::guides(fill = "none") +
ggplot2::scale_fill_brewer(palette = "Dark2") +
ggplot2::scale_colour_brewer(palette = "Dark2") +
ggplot2::theme_bw() +
ggplot2::theme(legend.position = "bottom",
panel.grid.minor = ggplot2::element_blank())
## ----message = FALSE, warning = FALSE-----------------------------------------
feature_matrix_red <- shrink(feature_matrix, plot = TRUE)
## ----message = FALSE, warning = FALSE-----------------------------------------
length(unique(feature_matrix$names))
length(unique(feature_matrix_red$names))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.