Nothing
#' Remove Tomek’s Links
#'
#' `step_tomek()` creates a *specification* of a recipe step that removes
#' majority class instances of tomek links.
#'
#' @inheritParams recipes::step_center
#' @param ... One or more selector functions to choose which
#' variable is used to sample the data. See [selections()]
#' for more details. The selection should result in _single
#' factor variable_. For the `tidy` method, these are not
#' currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param column A character string of the variable name that will
#' be populated (eventually) by the `...` selectors.
#' @param seed An integer that will be used as the seed when
#' applied.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` which is
#' the variable used to sample.
#'
#' @details
#' The factor variable used to balance around must only have 2 levels. All
#' other variables must be numerics with no missing data.
#'
#' A tomek link is defined as a pair of points from different classes and are
#' each others nearest neighbors.
#'
#' All columns in the data are sampled and returned by [juice()]
#' and [bake()].
#'
#' When used in modeling, users should strongly consider using the
#' option `skip = TRUE` so that the extra sampling is _not_
#' conducted outside of the training set.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns `terms`
#' (the selectors or variables selected) will be returned.
#'
#' @template case-weights-not-supported
#'
#' @references Tomek. Two modifications of cnn. IEEE Trans. Syst. Man Cybern.,
#' 6:769-772, 1976.
#'
#'@seealso [tomek()] for direct implementation
#' @family Steps for under-sampling
#'
#' @export
#' @examples
#' library(recipes)
#' library(modeldata)
#' data(hpc_data)
#'
#' hpc_data0 <- hpc_data %>%
#' select(-protocol, -day)
#'
#' orig <- count(hpc_data0, class, name = "orig")
#' orig
#'
#' up_rec <- recipe(class ~ ., data = hpc_data0) %>%
#' step_tomek(class) %>%
#' prep()
#'
#' training <- up_rec %>%
#' bake(new_data = NULL) %>%
#' count(class, name = "training")
#' training
#'
#' # Since `skip` defaults to TRUE, baking the step has no effect
#' baked <- up_rec %>%
#' bake(new_data = hpc_data0) %>%
#' count(class, name = "baked")
#' baked
#'
#' orig %>%
#' left_join(training, by = "class") %>%
#' left_join(baked, by = "class")
#'
#' library(ggplot2)
#'
#' ggplot(circle_example, aes(x, y, color = class)) +
#' geom_point() +
#' labs(title = "Without Tomek") +
#' xlim(c(1, 15)) +
#' ylim(c(1, 15))
#'
#' recipe(class ~ x + y, data = circle_example) %>%
#' step_tomek(class) %>%
#' prep() %>%
#' bake(new_data = NULL) %>%
#' ggplot(aes(x, y, color = class)) +
#' geom_point() +
#' labs(title = "With Tomek") +
#' xlim(c(1, 15)) +
#' ylim(c(1, 15))
step_tomek <-
function(recipe, ..., role = NA, trained = FALSE,
column = NULL, skip = TRUE, seed = sample.int(10^5, 1),
id = rand_id("tomek")) {
add_step(
recipe,
step_tomek_new(
terms = enquos(...),
role = role,
trained = trained,
column = column,
predictors = NULL,
skip = skip,
seed = seed,
id = id
)
)
}
step_tomek_new <-
function(terms, role, trained, column, predictors, skip, seed, id) {
step(
subclass = "tomek",
terms = terms,
role = role,
trained = trained,
column = column,
predictors = predictors,
skip = skip,
id = id,
seed = seed,
id = id
)
}
#' @export
prep.step_tomek <- function(x, training, info = NULL, ...) {
col_name <- recipes_eval_select(x$terms, training, info)
if (length(col_name) > 1) {
rlang::abort("The selector should select at most a single variable")
}
if (length(col_name) == 1) {
check_column_factor(training, col_name)
}
predictors <- setdiff(get_from_info(info, "predictor"), col_name)
check_type(training[, predictors], types = c("double", "integer"))
check_na(select(training, all_of(c(col_name, predictors))))
step_tomek_new(
terms = x$terms,
role = x$role,
trained = TRUE,
column = col_name,
predictors = predictors,
skip = x$skip,
seed = x$seed,
id = x$id
)
}
#' @export
bake.step_tomek <- function(object, new_data, ...) {
col_names <- unique(c(object$predictors, object$column))
check_new_data(col_names, object, new_data)
if (length(object$column) == 0L) {
# Empty selection
return(new_data)
}
predictor_data <- new_data[, col_names]
# tomek with seed for reproducibility
with_seed(
seed = object$seed,
code = {
tomek_data <- tomek_impl(
df = predictor_data,
var = object$column
)
}
)
if (length(tomek_data) > 0) {
new_data <- new_data[-tomek_data, ]
}
new_data
}
#' @export
print.step_tomek <-
function(x, width = max(20, options()$width - 26), ...) {
title <- "Tomek based on "
print_step(x$column, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @param x A `step_tomek` object.
#' @export
tidy.step_tomek <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = unname(x$column))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = unname(term_names))
}
res$id <- x$id
res
}
#' @rdname required_pkgs.step
#' @export
required_pkgs.step_tomek <- function(x, ...) {
c("themis")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.