Nothing
## ---- warning=FALSE, message=FALSE--------------------------------------------
library(tibbletime)
library(dplyr)
library(lubridate)
series <- create_series('2013' ~ '2017', 'day', class = "Date") %>%
mutate(var = rnorm(n()))
series
series %>%
mutate(year = year(date), month = month(date)) %>%
group_by(year, month) %>%
summarise(mean_var = mean(var))
## -----------------------------------------------------------------------------
series %>%
collapse_by("month") %>%
group_by(date) %>%
summarise(mean_var = mean(var))
## -----------------------------------------------------------------------------
second_series <- create_series('2013' ~ '2015', '5 second')
second_series %>%
mutate(var = rnorm(n())) %>%
collapse_by("hour") %>%
group_by(date) %>%
summarise(mean_var = mean(var))
## -----------------------------------------------------------------------------
set.seed(123)
# Create price series of hourly movements for apple and facebook stock.
apple <- create_series('2014' ~ '2016', period = '1 hour') %>%
mutate(price = 100 + cumsum(rnorm(n(), mean = 0, sd = .5)))
facebook <- create_series('2014' ~ '2016', period = '1 hour') %>%
mutate(price = 150 + cumsum(rnorm(n(), mean = 0, sd = .5)))
# Bind them together and create a symbol column to group on
price_series <- bind_rows(list(apple = apple, facebook = facebook), .id = "symbol") %>%
as_tbl_time(date) %>%
group_by(symbol)
# Collapse to daily and transform to OHLC (Open, High, Low, Close), a
# common financial transformation
price_series %>%
collapse_by("day") %>%
group_by(symbol, date) %>%
summarise(
open = first(price),
high = max(price),
low = min(price),
close = last(price)
) %>%
slice(1:5)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.