Nothing
## ---- echo = FALSE------------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ---- eval = FALSE------------------------------------------------------------
# install.packages("tidyLPA")
## ----gh-installation, eval = FALSE--------------------------------------------
# install.packages("devtools")
# devtools::install_github("data-edu/tidyLPA")
## ---- message = F-------------------------------------------------------------
library(tidyLPA)
library(dplyr)
## -----------------------------------------------------------------------------
pisaUSA15[1:100, ] %>%
select(broad_interest, enjoyment, self_efficacy) %>%
single_imputation() %>%
estimate_profiles(3)
## ---- eval = FALSE------------------------------------------------------------
# pisaUSA15[1:100, ] %>%
# select(broad_interest, enjoyment, self_efficacy) %>%
# single_imputation() %>%
# estimate_profiles(3, package = "MplusAutomation")
## ---- eval = TRUE-------------------------------------------------------------
pisaUSA15[1:100, ] %>%
select(broad_interest, enjoyment, self_efficacy) %>%
single_imputation() %>%
scale() %>%
estimate_profiles(3) %>%
plot_profiles()
## ---- eval = TRUE-------------------------------------------------------------
pisaUSA15[1:100, ] %>%
select(broad_interest, enjoyment, self_efficacy) %>%
single_imputation() %>%
estimate_profiles(1:3,
variances = c("equal", "varying"),
covariances = c("zero", "varying")) %>%
compare_solutions(statistics = c("AIC", "BIC"))
## ---- eval = FALSE------------------------------------------------------------
# pisaUSA15[1:100, ] %>%
# select(broad_interest, enjoyment, self_efficacy) %>%
# single_imputation() %>%
# estimate_profiles(3,
# package = "mplus",
# ANALYSIS = "starts = 100, 20;")
## ---- eval = FALSE------------------------------------------------------------
# pisaUSA15[1:100, ] %>%
# select(broad_interest, enjoyment, self_efficacy) %>%
# single_imputation() %>%
# estimate_profiles(3,
# prior = priorControl())
## ---- eval = TRUE-------------------------------------------------------------
pisaUSA15[1:100, ] %>%
select(broad_interest, enjoyment, self_efficacy) %>%
estimate_profiles(3,
variances = "varying",
covariances = "varying")
## ---- eval = TRUE-------------------------------------------------------------
m3 <- pisaUSA15[1:100, ] %>%
select(broad_interest, enjoyment, self_efficacy) %>%
estimate_profiles(3)
get_estimates(m3)
## ---- eval = TRUE-------------------------------------------------------------
pisaUSA15[1:100, ] %>%
select(broad_interest, enjoyment, self_efficacy) %>%
scale() %>%
estimate_profiles(4) %>%
plot_profiles()
pisaUSA15[1:100, ] %>%
select(broad_interest, enjoyment, self_efficacy) %>%
poms() %>%
estimate_profiles(4) %>%
plot_profiles()
## ---- eval = TRUE-------------------------------------------------------------
get_data(m3)
## -----------------------------------------------------------------------------
m4 <- pisaUSA15[1:100, ] %>%
select(broad_interest, enjoyment, self_efficacy) %>%
single_imputation() %>%
estimate_profiles(c(3, 4))
get_data(m4)
## -----------------------------------------------------------------------------
get_fit(m4)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.