Description Usage Arguments Details Author(s) References Examples
Create three dimensional PCA plots from longitudinal data or multiple omics data sets.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
micro_set |
A tidy_micro data set |
table |
OTU table of interest |
time_var |
The time point variable column name in your tidi_MIBI set |
subject |
The subject variable column name in your tidi_MIBI set |
y |
Value to calculate principle components or coordinates on. Default is centered log ratio (recommended) |
dist_method |
Dissimilartiy method to be calculated by |
type |
"PCA" for principle components or "PCoA" to calculated dissimilarity matrix using |
plot_scores |
Plot the scores instead of the principle components |
pch |
Plotting "character", i.e. symbol to use. |
cex.axis |
Options for |
cex.lab |
Options for |
cex |
Options for |
main |
Plot title |
subtitle |
Plot subtitle |
scalewt |
Logical; center and scale OTU table, recommended |
print.legend |
Logical; print plot legend |
legend.title |
Title for plot legend. Ignored if |
legend.position |
'x' argument in |
Requires that you have separate columns for subject ID and time point. Data must be complete across time points. The function will automatically filter out incomplete cases with a warning message.
When type = "PCoA" the component matrices must be specified prior to the optimization. This is handled automatically.
Charlie Carpenter, Kayla Williamson
vegdist
1 2 3 4 5 6 7 | data(bpd_phy); data(bpd_cla); data(bpd_ord); data(bpd_fam); data(bpd_clin)
otu_tabs = list(Phylum = bpd_phy, Class = bpd_cla,
Order = bpd_ord, Family = bpd_fam)
set <- tidy_micro(otu_tabs = otu_tabs, clinical = bpd_clin)
set %>% pca_3d(table = "Family", time_var = day, subject = study_id, legend.title = "Day")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.