Nothing
#' Test Hardy-Weinberg equilibrium at each locus
#'
#' Return the p-value from an exact test of HWE.
#'
#' This function uses the original C++ algorithm from PLINK 1.90.
#'
#' @param .x a vector of class `vctrs_bigSNP` (usually the `genotypes` column of
#' a [`gen_tibble`] object), or a [`gen_tibble`].
#' @param .col the column to be used when a tibble (or grouped tibble is passed
#' directly to the function). This defaults to "genotypes" and can only take
#' that value. There is no need for the user to set it, but it is included to
#' resolve certain tidyselect operations.
#' @param n_cores number of cores to be used, it defaults to
#' [bigstatsr::nb_cores()]
#' @param block_size maximum number of loci read at once.
#' @param mid_p boolean on whether the mid-p value should be computed. Default
#' is TRUE, as in PLINK.
#' @param type type of object to return, if using grouped method. One of "tidy",
#' "list", or "matrix". Default is "tidy".
#' @param ... not used.
#' @returns a vector of probabilities from HWE exact test, one per locus
#' @author the C++ algorithm was written by Christopher Chang for PLINK 1.90,
#' based on original code by Jan Wigginton (the code was released under GPL3).
#' @rdname loci_hwe
#' @export
#' @examples
#' \dontshow{
#' data.table::setDTthreads(2)
#' RhpcBLASctl::blas_set_num_threads(2)
#' RhpcBLASctl::omp_set_num_threads(2)
#' }
#' example_gt <- load_example_gt("gen_tbl")
#'
#' # For HWE
#' example_gt %>% loci_hwe()
#'
#' # For loci_hwe per locus per population, use reframe
#' example_gt %>%
#' group_by(population) %>%
#' reframe(loci_hwe = loci_hwe(genotypes))
#'
loci_hwe <- function(.x, .col = "genotypes", ...) {
UseMethod("loci_hwe", .x)
}
#' @export
#' @rdname loci_hwe
loci_hwe.tbl_df <- function(.x, .col = "genotypes", mid_p = TRUE, ...) {
stopifnot_gen_tibble(.x)
.col <- rlang::enquo(.col) %>%
rlang::quo_get_expr() %>%
rlang::as_string()
# confirm that .col is "genotypes"
if (.col != "genotypes") {
stop("loci_hwe only works with the genotypes column")
}
loci_hwe(.x$genotypes, mid_p = mid_p, ...)
}
#' @export
#' @rdname loci_hwe
loci_hwe.vctrs_bigSNP <- function(.x, .col = "genotypes", mid_p = TRUE, ...) {
rlang::check_dots_empty()
stopifnot_diploid(.x)
# get the FBM
geno_fbm <- attr(.x, "bigsnp")$genotypes
# rows (individuals) that we want to use
rows_to_keep <- vctrs::vec_data(.x)
# as long as we have more than one individual
if (length(rows_to_keep) > 1) {
# col hwe for submatrix (some rows, and some columns)
col_hwe_sub <- function(X, ind, rows_to_keep) { # nolint
# apply(X[rows_to_keep, ind], 2, HWExact_geno_vec) #nolint
geno_counts <- bigstatsr::big_counts(
X,
ind.row = rows_to_keep,
ind.col = ind
)
hwe_on_matrix(geno_counts = geno_counts, midp = mid_p)
}
hwe_p <- bigstatsr::big_apply(
geno_fbm,
a.FUN = col_hwe_sub,
rows_to_keep = rows_to_keep,
ind = attr(.x, "loci")$big_index,
a.combine = "c"
)
} else {
# if we have a single individual
stop("Not implemented for a single individual")
}
hwe_p
}
#' @export
#' @rdname loci_hwe
loci_hwe.grouped_df <- function(
.x,
.col = "genotypes",
mid_p = TRUE,
n_cores = bigstatsr::nb_cores(),
block_size = bigstatsr::block_size(nrow(.x), 1), # nolint
type = c("tidy", "list", "matrix"),
...) {
stopifnot_diploid(.x)
.col <- rlang::enquo(.col) %>%
rlang::quo_get_expr() %>%
rlang::as_string()
# confirm that .col is "genotypes"
if (.col != "genotypes") {
stop("loci_hwe only works with the genotypes column")
}
# check that we only have one grouping variable
if (length(.x %>% dplyr::group_vars()) > 1) {
stop("loci_hwe only works with one grouping variable")
}
rlang::check_dots_empty()
type <- match.arg(type)
geno_fbm <- .gt_get_bigsnp(.x)$genotypes
rows_to_keep <- .gt_bigsnp_rows(.x)
hwe_p_sub <- function(geno_fbm, ind, rows_to_keep) {
gt_grouped_hwe( # nolint
BM = geno_fbm,
rowInd = rows_to_keep,
colInd = ind,
groupIds = dplyr::group_indices(.x) - 1,
ngroups = max(dplyr::group_indices(.x)),
midp = mid_p
)
}
hwe_mat <- bigstatsr::big_apply(
geno_fbm,
a.FUN = hwe_p_sub,
rows_to_keep = rows_to_keep,
ind = attr(.x$genotypes, "loci")$big_index,
ncores = 1, # parallelisation is used within the function
block.size = block_size,
a.combine = "rbind"
)
hwe_mat <- format_grouped_output(
out_mat = hwe_mat,
group_ids = dplyr::group_keys(.x) %>% pull(1),
loci_names = loci_names(.x),
type = type
)
return(hwe_mat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.