Nothing
#' Mutates quantitative data
#'
#' `tq_mutate()` adds new variables to an existing tibble;
#' `tq_transmute()` returns only newly created columns and is typically
#' used when periodicity changes
#'
#' @name tq_mutate
#'
#' @param data A `tibble` (tidy data frame) of data typically from [tq_get()].
#' @param select The columns to send to the mutation function.
#' @param x,y Parameters used with `_xy` that consist of column names of variables
#' to be passed to the mutatation function (instead of OHLC functions).
#' @param mutate_fun The mutation function from either the `xts`,
#' `quantmod`, or `TTR` package. Execute `tq_mutate_fun_options()`
#' to see the full list of options by package.
#' @param col_rename A string or character vector containing names that can be used
#' to quickly rename columns.
#' @param ohlc_fun Deprecated. Use `select`.
#' @param ... Additional parameters passed to the appropriate mutatation
#' function.
#'
#' @return Returns mutated data in the form of a `tibble` object.
#'
#' @details
#' `tq_mutate` and `tq_transmute` are very flexible wrappers for various `xts`,
#' `quantmod` and `TTR` functions. The main advantage is the
#' results are returned as a `tibble` and the
#' function can be used with the `tidyverse`. `tq_mutate` is used when additional
#' columns are added to the return data frame. `tq_transmute` works exactly like `tq_mutate`
#' except it only returns the newly created columns. This is helpful when
#' changing periodicity where the new columns would not have the same number of rows
#' as the original tibble.
#'
#' `select` specifies the columns that get passed to the mutation function. Select works
#' as a more flexible version of the OHLC extractor functions from `quantmod` where
#' non-OHLC data works as well. When `select` is `NULL`, all columns are selected.
#' In Example 1 below, `close` returns the "close" price and sends this to the
#' mutate function, `periodReturn`.
#'
#' `mutate_fun` is the function that performs the work. In Example 1, this
#' is `periodReturn`, which calculates the period returns. The `...`
#' are additional arguments passed to the `mutate_fun`. Think of
#' the whole operation in Example 1 as the close price, obtained by `select = close`,
#' being sent to the `periodReturn` function along
#' with additional arguments defining how to perform the period return, which
#' includes `period = "daily"` and `type = "log"`.
#' Example 4 shows how to apply a rolling regression.
#'
#' `tq_mutate_xy` and `tq_transmute_xy` are designed to enable working with mutatation
#' functions that require two primary inputs (e.g. EVWMA, VWAP, etc).
#' Example 2 shows this benefit in action: using the EVWMA function that uses
#' volume to define the moving average period.
#'
#' `tq_mutate_`, `tq_mutate_xy_`, `tq_transmute_`, and `tq_transmute_xy_`
#' are setup for Non-Standard
#' Evaluation (NSE). This enables programatically changing column names by modifying
#' the text representations. Example 5 shows the difference in implementation.
#' Note that character strings are being passed to the variables instead of
#' unquoted variable names. See `vignette("nse")` for more information.
#'
#' `tq_mutate_fun_options` and `tq_transmute_fun_options` return a list of various
#' financial functions that are compatible with `tq_mutate` and `tq_transmute`,
#' respectively.
#'
#' @seealso [tq_get()]
#'
#' @examples
#' # Load libraries
#' library(dplyr)
#'
#' ##### Basic Functionality
#'
#' fb_stock_prices <- tidyquant::FANG %>%
#' filter(symbol == "META") %>%
#' filter(
#' date >= "2016-01-01",
#' date <= "2016-12-31"
#' )
#'
#' goog_stock_prices <- FANG %>%
#' filter(symbol == "GOOG") %>%
#' filter(
#' date >= "2016-01-01",
#' date <= "2016-12-31"
#' )
#'
#' # Example 1: Return logarithmic daily returns using periodReturn()
#' fb_stock_prices %>%
#' tq_mutate(select = close, mutate_fun = periodReturn,
#' period = "daily", type = "log")
#'
#' # Example 2: Use tq_mutate_xy to use functions with two columns required
#' fb_stock_prices %>%
#' tq_mutate_xy(x = close, y = volume, mutate_fun = EVWMA,
#' col_rename = "EVWMA")
#'
#' # Example 3: Using tq_mutate to work with non-OHLC data
#' tq_get("DCOILWTICO", get = "economic.data") %>%
#' tq_mutate(select = price, mutate_fun = lag.xts, k = 1, na.pad = TRUE)
#'
#' # Example 4: Using tq_mutate to apply a rolling regression
#' fb_returns <- fb_stock_prices %>%
#' tq_transmute(adjusted, periodReturn, period = "monthly", col_rename = "fb.returns")
#' goog_returns <- goog_stock_prices %>%
#' tq_transmute(adjusted, periodReturn, period = "monthly", col_rename = "goog.returns")
#' returns_combined <- left_join(fb_returns, goog_returns, by = "date")
#' regr_fun <- function(data) {
#' coef(lm(fb.returns ~ goog.returns, data = as_tibble(data)))
#' }
#' returns_combined %>%
#' tq_mutate(mutate_fun = rollapply,
#' width = 6,
#' FUN = regr_fun,
#' by.column = FALSE,
#' col_rename = c("coef.0", "coef.1"))
#'
#' # Example 5: Non-standard evaluation:
#' # Programming with tq_mutate_() and tq_mutate_xy_()
#' col_name <- "adjusted"
#' mutate <- c("MACD", "SMA")
#' tq_mutate_xy_(fb_stock_prices, x = col_name, mutate_fun = mutate[[1]])
NULL
# tq_mutate ------------------------------------------------------------------------------------------------
#' @rdname tq_mutate
#' @export
tq_mutate <- function(data, select = NULL, mutate_fun, col_rename = NULL, ohlc_fun = NULL, ...) {
# Deprecate ohlc_fun in favor of select
if (!missing(ohlc_fun)) {
warning("Argument ohlc_fun is deprecated; please use select instead.",
call. = FALSE)
# As text
ohlc_string <- lazyeval::expr_text(ohlc_fun)
# Find select equivalent or die trying
select <- map_ohlc_to_select(ohlc_string)
# NSE and return
return(
tq_mutate_(data = data,
select = select,
mutate_fun = lazyeval::expr_text(mutate_fun),
col_rename = col_rename,
... = ...)
)
}
# NSE
tq_mutate_(data = data,
select = lazyeval::expr_text(select),
mutate_fun = lazyeval::expr_text(mutate_fun),
col_rename = col_rename,
... = ...)
}
#' @rdname tq_mutate
#' @export
tq_mutate_ <- function(data, select = NULL, mutate_fun, col_rename = NULL, ...) {
UseMethod("tq_mutate_", data)
}
# tq_mutate method dispatch --------------------------------------------------------------------------------
#' @export
tq_mutate_.default <- function(data, select = NULL, mutate_fun, col_rename = NULL, ...) {
# Error message
stop("data must be a tibble or data.frame object")
}
#' @export
tq_mutate_.tbl_df <- function(data, select = NULL, mutate_fun, col_rename = NULL, ...) {
# Get transformation
ret <- tq_transmute_(data = data,
select = select,
mutate_fun = mutate_fun,
col_rename = col_rename,
... = ...)
merge_two_tibbles(tib1 = data, tib2 = ret, mutate_fun)
}
#' @export
tq_mutate_.data.frame <- function(data, select = NULL, mutate_fun, col_rename = NULL, ...) {
# Convert data.frame to tibble
data <- tibble::as_tibble(data)
# Get transformation
ret <- tq_transmute_(data = data,
select = select,
mutate_fun = mutate_fun,
col_rename = col_rename,
... = ...)
merge_two_tibbles(tib1 = data, tib2 = ret, mutate_fun)
}
# tq_mutate_xy ------------------------------------------------------------------------------------------------
#' @rdname tq_mutate
#' @export
tq_mutate_xy <- function(data, x, y = NULL, mutate_fun, col_rename = NULL, ...) {
# NSE
tq_mutate_xy_(data = data,
x = lazyeval::expr_text(x),
y = lazyeval::expr_text(y),
mutate_fun = lazyeval::expr_text(mutate_fun),
col_rename = col_rename,
... = ...)
}
#' @rdname tq_mutate
#' @export
tq_mutate_xy_ <- function(data, x, y = NULL, mutate_fun, col_rename = NULL, ...) {
UseMethod("tq_mutate_xy_", data)
}
# tq_mutate_xy method dispatch --------------------------------------------------------------------------------
#' @export
tq_mutate_xy_.default <- function(data, x, y = NULL, mutate_fun, col_rename = NULL, ...) {
# Error message
stop("data must be a tibble or data.frame object")
}
#' @export
tq_mutate_xy_.tbl_df <- function(data, x, y = NULL, mutate_fun, col_rename = NULL, ...) {
# Get transformation
ret <- tq_transmute_xy_(data = data,
x = x,
y = y,
mutate_fun = mutate_fun,
col_rename = col_rename,
... = ...)
merge_two_tibbles(tib1 = data, tib2 = ret, mutate_fun)
}
#' @export
tq_mutate_xy_.data.frame <- function(data, x, y = NULL, mutate_fun, col_rename = NULL, ...) {
# Convert data.frame to tibble
data <- tibble::as_tibble(data)
# Get transformation
ret <- tq_transmute_xy_(data = data,
x = x,
y = y,
mutate_fun = mutate_fun,
col_rename = col_rename,
... = ...)
merge_two_tibbles(tib1 = data, tib2 = ret, mutate_fun)
}
# Function options -------------------------------------------------------------------------------------------
#' @rdname tq_mutate
#' @export
tq_mutate_fun_options <- function() {
tq_transmute_fun_options()
}
# Utility ----------------------------------------------------------------------------------------------------
merge_two_tibbles <- function(tib1, tib2, mutate_fun) {
# Merge results
if (identical(nrow(tib1), nrow(tib2))) {
# Arrange dates - Possibility of issue if dates not decending in tib1
tib1 <- arrange_by_date(tib1)
# Drop date column and groups
tib2 <- drop_date_and_group_cols(tib2)
# Replace bad names
tib2 <- replace_bad_names(tib2, mutate_fun)
# Replace duplicate names
tib2 <- replace_duplicate_colnames(tib1, tib2)
ret <- dplyr::bind_cols(tib1, tib2)
} else {
stop("Could not join. Incompatible structures.")
}
return(ret)
}
replace_duplicate_colnames <- function(tib1, tib2) {
# Collect column names
name_list_tib1 <- colnames(tib1)
name_list_tib2 <- colnames(tib2)
name_list <- c(name_list_tib1, name_list_tib2)
duplicates_exist <- detect_duplicates(name_list)
# Iteratively add .1, .2, .3 ... onto end of column names
if (duplicates_exist) {
i <- 1
while (duplicates_exist) {
dup_names_stripped <-
stringr::str_split(name_list[duplicated(name_list)],
pattern = "\\.\\.",
simplify = FALSE) %>%
sapply(function(x) x[[1]])
name_list[duplicated(name_list)] <-
stringr::str_c(dup_names_stripped, "..", i)
i <- i + 1
duplicates_exist <- detect_duplicates(name_list)
}
name_list_tib2 <- name_list[(ncol(tib1) + 1):length(name_list)]
colnames(tib2) <- name_list_tib2
}
return(tib2)
}
detect_duplicates <- function(name_list) {
name_list %>%
duplicated() %>%
any()
}
# bad / restricted names are names that get selected unintetionally by OHLC functions
replace_bad_names <- function(tib, fun_name) {
bad_names_regex <- "open|high|low|close|volume|adjusted|price"
name_list_tib <- colnames(tib)
name_list_tib_lower <- stringr::str_to_lower(name_list_tib)
detect_bad_names <- stringr::str_detect(name_list_tib_lower, bad_names_regex)
if (any(detect_bad_names)) {
len <- length(name_list_tib_lower[detect_bad_names])
name_list_tib[detect_bad_names] <- rep(fun_name, length.out = len)
}
colnames(tib) <- name_list_tib
return(tib)
}
arrange_by_date <- function(tib) {
if (dplyr::is.grouped_df(tib)) {
group_names <- dplyr::group_vars(tib)
arrange_date <- function(tib) {
date_col <- get_col_name_date_or_date_time(tib)
tib %>%
dplyr::arrange(!!rlang::sym(date_col))
}
tib <- tib %>%
tidyr::nest() %>%
dplyr::mutate(nested.col =
purrr::map(.data$data, arrange_date)
) %>%
dplyr::select(-"data") %>%
tidyr::unnest(cols = nested.col) %>%
dplyr::group_by_at(.vars = group_names)
} else {
date_col <- get_col_name_date_or_date_time(tib)
tib <- tib %>%
dplyr::arrange(!!rlang::sym(date_col))
}
return(tib)
}
drop_date_and_group_cols <- function(tib) {
date_col <- get_col_name_date_or_date_time(tib)
group_cols <- dplyr::groups(tib) %>%
as.character()
cols_to_remove <- c(date_col, group_cols)
tib_names <- colnames(tib)
cols_to_remove_logical <- tib_names %in% cols_to_remove
tib_names_without_date_or_group <- tib_names[!cols_to_remove_logical]
tib <- tib %>%
dplyr::ungroup() %>%
dplyr::select(!!!rlang::syms(tib_names_without_date_or_group))
return(tib)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.