DatNet: R6 class for storing and managing already evaluated summary...

Description Usage Format Details Methods Active Bindings

Description

Class for evaluating and storing arbitrary summary measures sVar. The summary measures are evaluated based on the user-specified sVar expressions in sVar.object (sW or sA), in the environment of the input data.frame (Odata). The evaluated summary measures from sVar.object are stored as a matrix (self$mat.sVar). Contains methods for replacing missing values with default in gvars$misXreplace. Also contains method for detecting / setting sVar variable type (binary, categor, contin).

Usage

1

Format

An R6Class generator object

Details

  • Kmax - Maximum number of friends for any observation.

  • nFnode - Name of the vector that stores the number of friends for each observation (always set to 'nF').

  • netind_cl - Pointer to a network instance of class simcausal::NetIndClass.

  • Odata - Pointer to the input (observed) data frame.

  • mat.sVar - The evaluated matrix of summary measures for sW or sA.

  • sVar.object - Instance of the DefineSummariesClass class which contains the summary measure expressions for sW or sA.

  • type.sVar - named list of length ncol(mat.sVar) with sVar variable types: "binary"/"categor"/"contin".

  • norm.c.sVars - flag = TRUE if continous covariates need to be normalized.

  • nOdata - number of observations in the observed data frame.

Methods

new(netind_cl, nodes, nFnode, ...)

...

make.sVar(Odata, sVar.object = NULL, type.sVar = NULL, norm.c.sVars = FALSE)

...

def_types_sVar(type.sVar = NULL)

...

norm_c_sVars()

...

fixmiss_sVar()

...

norm.sVar(name.sVar)

...

set.sVar(name.sVar, new.sVar)

...

get.sVar(name.sVar)

...

set.sVar.type(name.sVar, new.type)

...

get.sVar.type(name.sVar)

...

Active Bindings

names.sVar

...

names.c.sVar

...

ncols.sVar

...

dat.sVar

...

emptydat.sVar

...

nodes

...



Search within the tmlenet package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.