Description Usage Format Details Methods Active Bindings
Class for evaluating and storing arbitrary summary measures sVar. The summary measures are evaluated based on the user-specified sVar expressions in sVar.object (sW or sA), in the environment of the input data.frame (Odata). The evaluated summary measures from sVar.object are stored as a matrix (self$mat.sVar). Contains methods for replacing missing values with default in gvars$misXreplace. Also contains method for detecting / setting sVar variable type (binary, categor, contin).
1 |
An R6Class
generator object
Kmax
- Maximum number of friends for any observation.
nFnode
- Name of the vector that stores the number of friends for each observation (always set to 'nF').
netind_cl
- Pointer to a network instance of class simcausal::NetIndClass
.
Odata
- Pointer to the input (observed) data frame.
mat.sVar
- The evaluated matrix of summary measures for sW
or sA
.
sVar.object
- Instance of the DefineSummariesClass
class which contains the summary measure expressions for sW
or sA
.
type.sVar
- named list of length ncol(mat.sVar)
with sVar
variable types: "binary"/"categor"/"contin".
norm.c.sVars
- flag = TRUE
if continous covariates need to be normalized.
nOdata
- number of observations in the observed data frame.
new(netind_cl, nodes, nFnode, ...)
...
make.sVar(Odata, sVar.object = NULL, type.sVar = NULL, norm.c.sVars = FALSE)
...
def_types_sVar(type.sVar = NULL)
...
norm_c_sVars()
...
fixmiss_sVar()
...
norm.sVar(name.sVar)
...
set.sVar(name.sVar, new.sVar)
...
get.sVar(name.sVar)
...
set.sVar.type(name.sVar, new.type)
...
get.sVar.type(name.sVar)
...
names.sVar
...
names.c.sVar
...
ncols.sVar
...
dat.sVar
...
emptydat.sVar
...
nodes
...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.