Description Usage Format Details Methods Active Bindings
Class for evaluating and storing arbitrary summary measures sVar. The summary measures are evaluated based on the user-specified sVar expressions in sVar.object (sW or sA), in the environment of the input data.frame (Odata). The evaluated summary measures from sVar.object are stored as a matrix (self$mat.sVar). Contains methods for replacing missing values with default in gvars$misXreplace. Also contains method for detecting / setting sVar variable type (binary, categor, contin).
1 |
An R6Class generator object
Kmax - Maximum number of friends for any observation.
nFnode - Name of the vector that stores the number of friends for each observation (always set to 'nF').
netind_cl - Pointer to a network instance of class simcausal::NetIndClass.
Odata - Pointer to the input (observed) data frame.
mat.sVar - The evaluated matrix of summary measures for sW or sA.
sVar.object - Instance of the DefineSummariesClass class which contains the summary measure expressions for sW or sA.
type.sVar - named list of length ncol(mat.sVar) with sVar variable types: "binary"/"categor"/"contin".
norm.c.sVars - flag = TRUE if continous covariates need to be normalized.
nOdata - number of observations in the observed data frame.
new(netind_cl, nodes, nFnode, ...)...
make.sVar(Odata, sVar.object = NULL, type.sVar = NULL, norm.c.sVars = FALSE)...
def_types_sVar(type.sVar = NULL)...
norm_c_sVars()...
fixmiss_sVar()...
norm.sVar(name.sVar)...
set.sVar(name.sVar, new.sVar)...
get.sVar(name.sVar)...
set.sVar.type(name.sVar, new.type)...
get.sVar.type(name.sVar)...
names.sVar...
names.c.sVar...
ncols.sVar...
dat.sVar...
emptydat.sVar...
nodes...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.