Description Usage Format Details Methods Active Bindings
This class inherits from DatNet and extends its methods to handle a single matrix dataset of
all summary measures (sA,sW)
The class DatNet.sWsA is the only way to access data in the entire package.
Contains methods for combining, subsetting, discretizing & binirizing summary measures (sW,sA).
For continous sVar this class provides methods for detecting / setting bin intervals,
normalization, disretization and construction of bin indicators.
The pointers to this class get passed on to SummariesModel functions: $fit(),
$predict() and $predictAeqa().
1 |
An R6Class generator object
datnetW - .
datnetA - .
active.bin.sVar - Currently discretized continous sVar column in data matrix mat.sVar.
mat.bin.sVar - Matrix of the binary indicators for discretized continuous covariate active.bin.sVar.
ord.sVar - Ordinal (categorical) transformation of a continous covariate sVar.
YnodeVals - .
det.Y - .
p - .
new(datnetW, datnetA, YnodeVals, det.Y, ...)...
addYnode(YnodeVals, det.Y)...
evalsubst(subsetexpr, subsetvars)...
get.dat.sWsA(rowsubset = TRUE, covars)...
get.outvar(rowsubset = TRUE, var)...
copy.sVar.types()...
bin.nms.sVar(name.sVar, nbins)...
pooled.bin.nm.sVar(name.sVar)...
detect.sVar.intrvls(name.sVar, nbins, bin_bymass, bin_bydhist, max_nperbin)...
detect.cat.sVar.levels(name.sVar)...
discretize.sVar(name.sVar, intervals)...
binirize.sVar(name.sVar, intervals, nbins, bin.nms)...
binirize.cat.sVar(name.sVar, levels)...
get.sVar.bw(name.sVar, intervals)...
get.sVar.bwdiff(name.sVar, intervals)...
make.dat.sWsA(p = 1, f.g_fun = NULL, sA.object = NULL)...
dat.sWsA...
dat.bin.sVar...
emptydat.bin.sVar...
names.sWsA...
nobs...
noNA.Ynodevals...
nodes...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.