Description Usage Format Details Methods Active Bindings
This class inherits from DatNet
and extends its methods to handle a single matrix dataset of
all summary measures (sA,sW)
The class DatNet.sWsA
is the only way to access data in the entire package.
Contains methods for combining, subsetting, discretizing & binirizing summary measures (sW,sA)
.
For continous sVar this class provides methods for detecting / setting bin intervals,
normalization, disretization and construction of bin indicators.
The pointers to this class get passed on to SummariesModel
functions: $fit()
,
$predict()
and $predictAeqa()
.
1 |
An R6Class
generator object
datnetW
- .
datnetA
- .
active.bin.sVar
- Currently discretized continous sVar
column in data matrix mat.sVar
.
mat.bin.sVar
- Matrix of the binary indicators for discretized continuous covariate active.bin.sVar
.
ord.sVar
- Ordinal (categorical) transformation of a continous covariate sVar
.
YnodeVals
- .
det.Y
- .
p
- .
new(datnetW, datnetA, YnodeVals, det.Y, ...)
...
addYnode(YnodeVals, det.Y)
...
evalsubst(subsetexpr, subsetvars)
...
get.dat.sWsA(rowsubset = TRUE, covars)
...
get.outvar(rowsubset = TRUE, var)
...
copy.sVar.types()
...
bin.nms.sVar(name.sVar, nbins)
...
pooled.bin.nm.sVar(name.sVar)
...
detect.sVar.intrvls(name.sVar, nbins, bin_bymass, bin_bydhist, max_nperbin)
...
detect.cat.sVar.levels(name.sVar)
...
discretize.sVar(name.sVar, intervals)
...
binirize.sVar(name.sVar, intervals, nbins, bin.nms)
...
binirize.cat.sVar(name.sVar, levels)
...
get.sVar.bw(name.sVar, intervals)
...
get.sVar.bwdiff(name.sVar, intervals)
...
make.dat.sWsA(p = 1, f.g_fun = NULL, sA.object = NULL)
...
dat.sWsA
...
dat.bin.sVar
...
emptydat.bin.sVar
...
names.sWsA
...
nobs
...
noNA.Ynodevals
...
nodes
...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.