build_model | R Documentation |
Construct a transition network analysis (TNA) model from sequence data. The function takes a data set of sequence of events or states as input and builds a TNA model. It extracts the edge weights and initial probabilities from the data along with the state labels. THe function also accepts weight matrices and initial state probabilities directly.
build_model(x, type = "relative", scaling = character(0L), ...)
## Default S3 method:
build_model(
x,
type = "relative",
scaling = character(0L),
inits,
params = list(),
...
)
## S3 method for class 'matrix'
build_model(x, type = "relative", scaling = character(0L), inits, ...)
## S3 method for class 'stslist'
build_model(
x,
type = "relative",
scaling = character(0L),
cols = seq(1, ncol(x)),
params = list(),
...
)
## S3 method for class 'data.frame'
build_model(
x,
type = "relative",
scaling = character(0L),
cols = seq(1, ncol(x)),
params = list(),
...
)
## S3 method for class 'tna_data'
build_model(x, type = "relative", scaling = character(0), params = list(), ...)
tna(x, ...)
ftna(x, ...)
ctna(x, ...)
atna(x, ...)
x |
A |
type |
A
|
scaling |
A
|
... |
Ignored. For the |
inits |
An optional |
params |
A
|
cols |
An |
An object of class tna
which is a list
containing the
following elements:
weights
: An adjacency matrix
of the model (weight matrix).
inits
: A numeric
vector of initial values for each state.
For matrix
type x
, this element will be NULL
if inits
is not
directly provided
labels
: A character
vector of the state labels, or NULL
if
there are no labels.
data
: The original sequence data that has been converted to an
internal format used by the package when x
is a stslist
or a
data.frame
object. Otherwise NULL
.
Basic functions
hist.group_tna()
,
hist.tna()
,
import_data()
,
plot.group_tna()
,
plot.tna()
,
plot_frequencies()
,
plot_frequencies.group_tna()
,
plot_mosaic()
,
plot_mosaic.group_tna()
,
plot_mosaic.tna_data()
,
prepare_data()
,
print.group_tna()
,
print.summary.group_tna()
,
print.summary.tna()
,
print.tna()
,
print.tna_data()
,
simulate.tna()
,
summary.group_tna()
,
summary.tna()
,
tna-package
model <- build_model(group_regulation)
print(model)
model <- tna(group_regulation)
model <- ftna(group_regulation)
model <- ctna(group_regulation)
model <- atna(group_regulation)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.