permutation_test | R Documentation |
This function compares two networks built from sequence data using permutation tests. The function builds Markov models for two sequence objects, computes the transition probabilities, and compares them by performing permutation tests. It returns the differences in transition probabilities, effect sizes, estimated p-values, and confidence intervals.
permutation_test(x, ...)
## S3 method for class 'tna'
permutation_test(
x,
y,
adjust = "none",
iter = 1000,
paired = FALSE,
level = 0.05,
measures = character(0),
...
)
x |
A |
... |
Additional arguments passed to |
y |
A |
adjust |
A |
iter |
An |
paired |
A |
level |
A |
measures |
A |
A tna_permutation
object which is a list
with two elements:
edges
and centralities
, both containing the following elements:
stats
: A data.frame
of original differences, effect sizes, and
estimated p-values for each edge or centrality measure. The effect size
is computed as the observed difference divided by the standard deviation
of the differences of the permuted samples.
diffs_true
: A matrix
of differences in the data.
diffs_sig
: A matrix
showing the significant differences.
Validation functions
bootstrap()
,
deprune()
,
estimate_cs()
,
permutation_test.group_tna()
,
plot.group_tna_bootstrap()
,
plot.group_tna_permutation()
,
plot.group_tna_stability()
,
plot.tna_bootstrap()
,
plot.tna_permutation()
,
plot.tna_stability()
,
print.group_tna_bootstrap()
,
print.group_tna_permutation()
,
print.group_tna_stability()
,
print.summary.group_tna_bootstrap()
,
print.summary.tna_bootstrap()
,
print.tna_bootstrap()
,
print.tna_permutation()
,
print.tna_stability()
,
prune()
,
pruning_details()
,
reprune()
,
summary.group_tna_bootstrap()
,
summary.tna_bootstrap()
model_x <- tna(group_regulation[1:200, ])
model_y <- tna(group_regulation[1001:1200, ])
# Small number of iterations for CRAN
permutation_test(model_x, model_y, iter = 20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.