Nothing
#' Calculate diagnostics for each topic in a topic model
#'
#' Generate a dataframe containing the diagnostics for each topic in a topic model
#'
#'
#' @param topic_model a fitted topic model object from one of the following:
#' \code{\link[topicmodels]{tm-class}}
#' @param dtm_data a document-term matrix of token counts coercible to \code{slam_triplet_matrix}
#' where each row is a document, each column is a token,
#' and each entry is the frequency of the token in a given document
#' @param top_n_tokens an integer indicating the number of top words to consider for mean token length
#' @param method a string indicating which method to use -
#' "gamma_threshold" or "largest_gamma"
#' @param gamma_threshold a number between 0 and 1 indicating the gamma threshold to be used
#' when using the gamma threshold method, the default is 0.2
#'
#' @return A dataframe where each row is a topic and each column contains
#' the associated diagnostic values
#'
#' @references {
#' Jordan Boyd-Graber, David Mimno, and David Newman, 2014.
#' \emph{Care and Feeding of Topic Models: Problems, Diagnostics, and Improvements.}
#' CRC Handbooks ofModern Statistical Methods. CRC Press, Boca Raton, Florida.
#' }
#'
#' @export
#'
#' @examples
#'
#' # Using the example from the LDA function
#' library(topicmodels)
#' data("AssociatedPress", package = "topicmodels")
#' lda <- LDA(AssociatedPress[1:20,], control = list(alpha = 0.1), k = 2)
#' topic_diagnostics(lda, AssociatedPress[1:20,])
topic_diagnostics <- function(topic_model, dtm_data, top_n_tokens = 10,
method = c("gamma_threshold", "largest_gamma"),
gamma_threshold = 0.2){
# Ensure the user passed a valid method argument
method <- match.arg(method)
# Check that the model and dtm contain the same number of documents
if (!contain_equal_docs(topic_model, dtm_data)) {
stop("The topic model object and document-term matrix contain an unequal number of documents.")
}
# Create a data frame with all of the diagnostics in the package
data.frame(
topic_num = 1:n_topics(topic_model),
topic_size = topic_size(topic_model),
mean_token_length = mean_token_length(topic_model),
dist_from_corpus = dist_from_corpus(topic_model, dtm_data),
tf_df_dist = tf_df_dist(topic_model, dtm_data),
doc_prominence = doc_prominence(topic_model, method, gamma_threshold),
topic_coherence = topic_coherence(topic_model, dtm_data, top_n_tokens),
topic_exclusivity = topic_exclusivity(topic_model, top_n_tokens)
)
}
#' Helper function to determine the number of topics in a topic model
#'
#' @param topic_model a fitted topic model object from one of the following:
#' \code{\link[topicmodels]{tm-class}}
#'
#' @return an integer indicating the number of topics in the topic model
n_topics <- function(topic_model){
if (inherits(topic_model, "TopicModel")) {
topic_model@k
}
}
#' Helper function to check that a topic model and a dtm contain the same number of documents
#'
#' @param topic_model a fitted topic model object from one of the following:
#' \code{\link[topicmodels]{tm-class}}
#' @param dtm_data a document-term matrix of token counts coercible to \code{simple_triplet_matrix}
#'
#' @return a logical indicating whether or not the two object contain the same number of documents
contain_equal_docs <- function(topic_model, dtm_data){
if (inherits(topic_model, "TopicModel")) {
topic_model@Dim[1] == nrow(dtm_data)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.