nn_adaptive_max_pool3d: Applies a 3D adaptive max pooling over an input signal...

Description Usage Arguments Examples

Description

The output is of size D x H x W, for any input size. The number of output features is equal to the number of input planes.

Usage

1
nn_adaptive_max_pool3d(output_size, return_indices = FALSE)

Arguments

output_size

the target output size of the image of the form D x H x W. Can be a tuple (D, H, W) or a single D for a cube D x D x D. D, H and W can be either a int, or None which means the size will be the same as that of the input.

return_indices

if TRUE, will return the indices along with the outputs. Useful to pass to nn_max_unpool3d(). Default: FALSE

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
if (torch_is_installed()) {
# target output size of 5x7x9
m <- nn_adaptive_max_pool3d(c(5,7,9))
input <- torch_randn(1, 64, 8, 9, 10)
output <- m(input)
# target output size of 7x7x7 (cube)
m <- nn_adaptive_max_pool3d(7)
input <- torch_randn(1, 64, 10, 9, 8)
output <- m(input)

}

torch documentation built on Oct. 7, 2021, 9:22 a.m.