nn_bilinear | R Documentation |
Applies a bilinear transformation to the incoming data
y = x_1^T A x_2 + b
nn_bilinear(in1_features, in2_features, out_features, bias = TRUE)
in1_features |
size of each first input sample |
in2_features |
size of each second input sample |
out_features |
size of each output sample |
bias |
If set to |
Input1: (N, *, H_{in1})
H_{in1}=\mbox{in1\_features}
and
*
means any number of additional dimensions. All but the last
dimension of the inputs should be the same.
Input2: (N, *, H_{in2})
where H_{in2}=\mbox{in2\_features}
.
Output: (N, *, H_{out})
where H_{out}=\mbox{out\_features}
and all but the last dimension are the same shape as the input.
weight: the learnable weights of the module of shape
(\mbox{out\_features}, \mbox{in1\_features}, \mbox{in2\_features})
.
The values are initialized from \mathcal{U}(-\sqrt{k}, \sqrt{k})
, where
k = \frac{1}{\mbox{in1\_features}}
bias: the learnable bias of the module of shape (\mbox{out\_features})
.
If bias
is TRUE
, the values are initialized from
\mathcal{U}(-\sqrt{k}, \sqrt{k})
, where
k = \frac{1}{\mbox{in1\_features}}
if (torch_is_installed()) {
m <- nn_bilinear(20, 30, 50)
input1 <- torch_randn(128, 20)
input2 <- torch_randn(128, 30)
output <- m(input1, input2)
print(output$size())
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.