nn_embedding_bag | R Documentation |
Computes sums, means or maxes of bags
of embeddings, without instantiating the
intermediate embeddings.
nn_embedding_bag(
num_embeddings,
embedding_dim,
max_norm = NULL,
norm_type = 2,
scale_grad_by_freq = FALSE,
mode = "mean",
sparse = FALSE,
include_last_offset = FALSE,
padding_idx = NULL,
.weight = NULL
)
num_embeddings |
(int): size of the dictionary of embeddings |
embedding_dim |
(int): the size of each embedding vector |
max_norm |
(float, optional): If given, each embedding vector with norm larger than |
norm_type |
(float, optional): The p of the p-norm to compute for the |
scale_grad_by_freq |
(boolean, optional): If given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default |
mode |
(string, optional): |
sparse |
(bool, optional): If |
include_last_offset |
(bool, optional): if |
padding_idx |
(int, optional): If given, pads the output with the embedding vector at |
.weight |
(Tensor, optional) embeddings weights (in case you want to set it manually) |
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
initialized from \mathcal{N}(0, 1)
if (torch_is_installed()) {
# an EmbeddingBag module containing 10 tensors of size 3
embedding_sum <- nn_embedding_bag(10, 3, mode = 'sum')
# a batch of 2 samples of 4 indices each
input <- torch_tensor(c(1, 2, 4, 5, 4, 3, 2, 9), dtype = torch_long())
offsets <- torch_tensor(c(0, 4), dtype = torch_long())
embedding_sum(input, offsets)
# example with padding_idx
embedding_sum <- nn_embedding_bag(10, 3, mode = 'sum', padding_idx = 1)
input <- torch_tensor(c(2, 2, 2, 2, 4, 3, 2, 9), dtype = torch_long())
offsets <- torch_tensor(c(0, 4), dtype = torch_long())
embedding_sum(input, offsets)
# An EmbeddingBag can be loaded from an Embedding like so
embedding <- nn_embedding(10, 3, padding_idx = 2)
embedding_sum <- nn_embedding_bag$from_pretrained(embedding$weight,
padding_idx = embedding$padding_idx,
mode='sum')
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.