nn_poisson_nll_loss | R Documentation |
Negative log likelihood loss with Poisson distribution of target. The loss can be described as:
nn_poisson_nll_loss(
log_input = TRUE,
full = FALSE,
eps = 1e-08,
reduction = "mean"
)
log_input |
(bool, optional): if |
full |
(bool, optional): whether to compute full loss, i. e. to add the
Stirling approximation term
|
eps |
(float, optional): Small value to avoid evaluation of |
reduction |
(string, optional): Specifies the reduction to apply to the output:
|
\mbox{target} \sim \mathrm{Poisson}(\mbox{input})
\mbox{loss}(\mbox{input}, \mbox{target}) = \mbox{input} - \mbox{target} * \log(\mbox{input})
+ \log(\mbox{target!})
The last term can be omitted or approximated with Stirling formula. The approximation is used for target values more than 1. For targets less or equal to 1 zeros are added to the loss.
Input: (N, *)
where *
means, any number of additional
dimensions
Target: (N, *)
, same shape as the input
Output: scalar by default. If reduction
is 'none'
, then (N, *)
,
the same shape as the input
if (torch_is_installed()) {
loss <- nn_poisson_nll_loss()
log_input <- torch_randn(5, 2, requires_grad = TRUE)
target <- torch_randn(5, 2)
output <- loss(log_input, target)
output$backward()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.