nnf_pad | R Documentation |
Pads tensor.
nnf_pad(input, pad, mode = "constant", value = NULL)
input |
(Tensor) N-dimensional tensor |
pad |
(tuple) m-elements tuple, where |
mode |
'constant', 'reflect', 'replicate' or 'circular'. Default: 'constant' |
value |
fill value for 'constant' padding. Default: 0. |
The padding size by which to pad some dimensions of input
are described starting from the last dimension and moving forward.
\left\lfloor\frac{\mbox{len(pad)}}{2}\right\rfloor
dimensions
of input
will be padded.
For example, to pad only the last dimension of the input tensor, then
pad
has the form
(\mbox{padding\_left}, \mbox{padding\_right})
;
to pad the last 2 dimensions of the input tensor, then use
(\mbox{padding\_left}, \mbox{padding\_right},
\mbox{padding\_top}, \mbox{padding\_bottom})
;
to pad the last 3 dimensions, use
(\mbox{padding\_left}, \mbox{padding\_right},
\mbox{padding\_top}, \mbox{padding\_bottom}
\mbox{padding\_front}, \mbox{padding\_back})
.
See nn_constant_pad_2d
, nn_reflection_pad_2d
, and
nn_replication_pad_2d
for concrete examples on how each of the
padding modes works. Constant padding is implemented for arbitrary dimensions.
tensor, or the last 2 dimensions of 4D input tensor, or the last dimension of
3D input tensor. Reflect padding is only implemented for padding the last 2
dimensions of 4D input tensor, or the last dimension of 3D input tensor.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.