optim_asgd | R Documentation |
Proposed in Acceleration of stochastic approximation by averaging
optim_asgd(
params,
lr = 0.01,
lambda = 1e-04,
alpha = 0.75,
t0 = 1e+06,
weight_decay = 0
)
params |
(iterable): iterable of parameters to optimize or lists defining parameter groups |
lr |
(float): learning rate |
lambda |
(float, optional): decay term (default: 1e-4) |
alpha |
(float, optional): power for eta update (default: 0.75) |
t0 |
(float, optional): point at which to start averaging (default: 1e6) |
weight_decay |
(float, optional): weight decay (L2 penalty) (default: 0) |
If you need to move a model to GPU via $cuda()
, please do so before
constructing optimizers for it. Parameters of a model after $cuda()
will be different objects from those before the call. In general, you
should make sure that the objects pointed to by model parameters subject
to optimization remain the same over the whole lifecycle of optimizer
creation and usage.
if (torch_is_installed()) {
## Not run:
optimizer <- optim_asgd(model$parameters(), lr = 0.1)
optimizer$zero_grad()
loss_fn(model(input), target)$backward()
optimizer$step()
## End(Not run)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.