Nothing
#' @include collection-rf100-doc.R
NULL
#' RoboFlow 100 Medical dataset Collection
#'
#' Loads one of the [RoboFlow 100 Medical](https://universe.roboflow.com/browse/medical) datasets (COCO
#' format) with per-dataset folders and train/valid/test splits.
#'
#' @inheritParams rf100_document_collection
#' @param dataset Dataset to select within \code{c("radio_signal",
#' "rheumatology", "knee", "abdomen_mri", "brain_axial_mri",
#' "gynecology_mri", "brain_tumor", "fracture")}.
#' @inherit rf100_document_collection return
#'
#' @examples
#' \dontrun{
#' ds <- rf100_medical_collection(
#' dataset = "rheumatology",
#' split = "test",
#' transform = transform_to_tensor,
#' download = TRUE
#' )
#' item <- ds[1]
#' boxed <- draw_bounding_boxes(item)
#' tensor_image_browse(boxed)
#' }
#'
#' @family detection_dataset
#' @export
rf100_medical_collection <- torch::dataset(
name = "rf100_medical_collection",
inherit = rf100_document_collection,
resources = data.frame(
dataset = rep(
c("radio_signal", "rheumatology", "knee", "abdomen_mri", "brain_axial_mri",
"gynecology_mri", "brain_tumor", "fracture"), each = 3
),
split = rep(c("train", "test", "valid"), times = 8),
url = c(
# radio_signal
"https://huggingface.co/datasets/Francesco/radio-signal/resolve/main/data/train-00000-of-00001-0e1bb7466d6c3ca3.parquet",
"https://huggingface.co/datasets/Francesco/radio-signal/resolve/main/data/test-00000-of-00001-cea246c736448c0f.parquet",
"https://huggingface.co/datasets/Francesco/radio-signal/resolve/main/data/validation-00000-of-00001-0e172ea211bc5c25.parquet",
# rheumatology
"https://huggingface.co/datasets/Francesco/x-ray-rheumatology/resolve/main/data/train-00000-of-00001-3ca059ad007a94ea.parquet",
"https://huggingface.co/datasets/Francesco/x-ray-rheumatology/resolve/main/data/test-00000-of-00001-8ce1659e856c6713.parquet",
"https://huggingface.co/datasets/Francesco/x-ray-rheumatology/resolve/main/data/validation-00000-of-00001-0a5d512b2f7219ad.parquet",
# knee
"https://huggingface.co/datasets/Francesco/acl-x-ray/resolve/main/data/train-00000-of-00001-297d76f4f8e3f0d1.parquet",
"https://huggingface.co/datasets/Francesco/acl-x-ray/resolve/main/data/test-00000-of-00001-771fc5699ba6259e.parquet",
"https://huggingface.co/datasets/Francesco/acl-x-ray/resolve/main/data/validation-00000-of-00001-d64bcf3a8b32ec7d.parquet",
# abdomen_mri
"https://huggingface.co/datasets/Francesco/abdomen-mri/resolve/main/data/train-00000-of-00001-b5aa979424bb4685.parquet",
"https://huggingface.co/datasets/Francesco/abdomen-mri/resolve/main/data/test-00000-of-00001-8b677ef1cabf7f16.parquet",
"https://huggingface.co/datasets/Francesco/abdomen-mri/resolve/main/data/validation-00000-of-00001-73d9615650a3749b.parquet",
# brain_axial_mri
"https://huggingface.co/datasets/Francesco/axial-mri/resolve/main/data/train-00000-of-00001-62cf6bf015fef032.parquet",
"https://huggingface.co/datasets/Francesco/axial-mri/resolve/main/data/test-00000-of-00001-7780878af8cf3e7b.parquet",
"https://huggingface.co/datasets/Francesco/axial-mri/resolve/main/data/validation-00000-of-00001-bcd8291312ff472b.parquet",
# gynecology_mri
"https://huggingface.co/datasets/Francesco/gynecology-mri/resolve/main/data/train-00000-of-00001-ff598b0e3b7eb2c0.parquet",
"https://huggingface.co/datasets/Francesco/gynecology-mri/resolve/main/data/test-00000-of-00001-ef538477a1b308ab.parquet",
"https://huggingface.co/datasets/Francesco/gynecology-mri/resolve/main/data/validation-00000-of-00001-1d8f153a588ec0a9.parquet",
# brain_tumor
"https://huggingface.co/datasets/Francesco/brain-tumor-m2pbp/resolve/main/data/train-00000-of-00001-92b37a681420e786.parquet",
"https://huggingface.co/datasets/Francesco/brain-tumor-m2pbp/resolve/main/data/test-00000-of-00001-bc5b44853d12ccfc.parquet",
"https://huggingface.co/datasets/Francesco/brain-tumor-m2pbp/resolve/main/data/validation-00000-of-00001-4b3513c4ec0a5e8f.parquet",
# fracture
"https://huggingface.co/datasets/Francesco/bone-fracture-7fylg/resolve/main/data/train-00000-of-00001-26e4f0e80e263728.parquet",
"https://huggingface.co/datasets/Francesco/bone-fracture-7fylg/resolve/main/data/test-00000-of-00001-9fe0a8c08ab79a8b.parquet",
"https://huggingface.co/datasets/Francesco/bone-fracture-7fylg/resolve/main/data/validation-00000-of-00001-647af68e048aed16.parquet"
),
md5 = c(
# radio_signal
"0e92cde0cae78019cdf736a0ec09cb6a", "696458e584fb090a79790c46d8f0621d", "08195336ff727c222fcd011d47164ec1",
# rheumatology
"3cdb356519def48577f4fbbd075c7328", "0047b0c762e1434635a4ef78ff979e3d", "bd6cbaa11f9d0e822881158e5f936e99",
# knee
"0e85f93fe793c25b8da3f245cd1968f6", "7d0da6a924a3aabc21234da9423638a8", "6afc61c17ad6da97f614ef558afca522",
# abdomen_mri
"6790fe6e214d5cf8ffef20bbd9a145bd", "7b2985dbd628aaa2d6b226bbc13002ee", "eab70beb5373212ba127c9dc9032214e",
# brain_axial_mri
"34d9fa3f0b86b75b98ddb3e111a78222", "10df9ece0cfd4fd870cd6e77934f66c7", "5e6a425dede86157a753cb8f62bb302f",
# gynecology_mri
"4705c18355707e921780c8c5c66f9233", "a839a9242eeeed991623f376f83011b7", "163cf422080c43db4a7d37fe7585d4f6",
# brain_tumor
"ac40f245c7c45f0eb9e4491e3452380f", "0f1b174a26706f35d377dff81293f99b", "f32abc88b31b06d77479f2aafc2a2062",
# fracture
"419080e7f1f400eb97f518c660083a32", "5a2ee2edede004350478fc8feaa1458f", "4a6c11900ff3f5b64fac71dba4d1f7f2"),
size = c(51, 15, 7, 2.5, 0.6, 0.3, 46, 13, 6.5, 62, 15, 9, 3.4, 0.8, 0.5,
50, 13, 7, 142, 40, 20, 9, 2, 1) * 1e6,
stringsAsFactors = FALSE
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.