Nothing
#' Oxford Flowers 102 Dataset
#'
#' Loads the Oxford 102 Category Flower Dataset. This dataset consists of 102 flower categories,
#' with between 40 and 258 images per class. Images in this dataset are of variable sizes.
#'
#' This is a **classification** dataset where the goal is to assign each image to one of the 102 flower categories.
#'
#' The dataset is split into:
#' - `"train"`: training subset with labels.
#' - `"val"`: validation subset with labels.
#' - `"test"`: test subset with labels (used for evaluation).
#'
#' @inheritParams fgvc_aircraft_dataset
#' @param root Root directory for dataset storage. The dataset will be stored under `root/flowers102`.
#' @param split One of `"train"`, `"val"`, or `"test"`. Default is `"train"`.
#'
#' @return An object of class \code{flowers102_dataset}, which behaves like a torch dataset.
#' Each element is a named list:
#' - `x`: a W x H x 3 numeric array representing an RGB image.
#' - `y`: an integer label indicating the class index.
#'
#' @examples
#' \dontrun{
#' # Load the dataset with inline transforms
#' flowers <- flowers102_dataset(
#' split = "train",
#' download = TRUE,
#' transform = . %>% transform_to_tensor() %>% transform_resize(c(224, 224))
#' )
#'
#' # Create a dataloader
#' dl <- dataloader(
#' dataset = flowers,
#' batch_size = 4
#' )
#'
#' # Access a batch
#' batch <- dataloader_next(dataloader_make_iter(dl))
#' batch$x # Tensor of shape (4, 3, 224, 224)
#' batch$y # Tensor of shape (4,) with numeric class labels
#' }
#'
#' @family classification_dataset
#' @export
flowers102_dataset <- dataset(
name = "flowers102",
archive_size = "330 MB",
classes = c(
"pink primrose", "hard-leaved pocket orchid", "canterbury bells", "sweet pea", "english marigold",
"tiger lily", "moon orchid", "bird of paradise", "monkshood", "globe thistle",
"snapdragon", "colt's foot", "king protea", "spear thistle", "yellow iris",
"globe-flower", "purple coneflower", "peruvian lily", "balloon flower", "giant white arum lily",
"fire lily", "pincushion flower", "fritillary", "red ginger", "grape hyacinth",
"corn poppy", "prince of wales feathers", "stemless gentian", "artichoke", "sweet william",
"carnation", "garden phlox", "love in the mist", "mexican aster", "alpine sea holly",
"ruby-lipped cattleya", "cape flower", "great masterwort", "siam tulip", "lenten rose",
"barbeton daisy", "daffodil", "sword lily", "poinsettia", "bolero deep blue",
"wallflower", "marigold", "buttercup", "oxeye daisy", "common dandelion",
"petunia", "wild pansy", "primula", "sunflower", "pelargonium",
"bishop of llandaff", "gaura", "geranium", "orange dahlia", "pink-yellow dahlia?",
"cautleya spicata", "japanese anemone", "black-eyed susan", "silverbush", "californian poppy",
"osteospermum", "spring crocus", "bearded iris", "windflower", "tree poppy",
"gazania", "azalea", "water lily", "rose", "thorn apple",
"morning glory", "passion flower", "lotus", "toad lily", "anthurium",
"frangipani", "clematis", "hibiscus", "columbine", "desert-rose",
"tree mallow", "magnolia", "cyclamen", "watercress", "canna lily",
"hippeastrum", "bee balm", "ball moss", "foxglove", "bougainvillea",
"camellia", "mallow", "mexican petunia", "bromelia", "blanket flower",
"trumpet creeper", "blackberry lily"
),
resources = list(
c("https://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz", "52808999861908f626f3c1f4e79d11fa"),
c("https://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat", "e0620be6f572b9609742df49c70aed4d"),
c("https://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat", "a5357ecc9cb78c4bef273ce3793fc85c")
),
initialize = function(
root = tempdir(),
split = "train",
transform = NULL,
target_transform = NULL,
download = FALSE
) {
self$root_path <- root
self$split <- match.arg(split, c("train", "val", "test"))
self$transform <- transform
self$target_transform <- target_transform
self$classes <- self$classes
if (download){
cli_inform("Dataset {.cls {class(self)[[1]]}} (~{.emph {self$archive_size}}) will be downloaded and processed if not already available.")
self$download()
}
if (!self$check_exists(self$split))
cli_abort("Dataset not found. You can use `download = TRUE` to download it.")
meta <- readRDS(file.path(self$processed_folder, glue::glue("{self$split}.rds")))
self$img_path <- meta$img_path
self$labels <- meta$labels
cli_inform("Split {.val {self$split}} of dataset {.cls {class(self)[[1]]}} loaded with {length(self$img_path)} samples.")
},
.getitem = function(index) {
img_path <- self$img_path[[index]]
y <- self$labels[[index]]
x <- jpeg::readJPEG(img_path)
if (!is.null(self$transform))
x <- self$transform(x)
if (!is.null(self$target_transform))
y <- self$target_transform(y)
list(x = x, y = y)
},
.length = function() {
length(self$img_path)
},
download = function() {
if (self$check_exists(self$split)) {
cli_inform("Split {.val {self$split}} of dataset {.cls {class(self)[[1]]}} is already processed and cached.")
}
fs::dir_create(self$raw_folder)
fs::dir_create(self$processed_folder)
cli_inform("Downloading {.cls {class(self)[[1]]}} ...")
archives <- lapply(self$resources, function(r) {
archive <- download_and_cache(r[1], prefix = class(self)[1])
if (!tools::md5sum(archive) == r[2])
cli_abort("Corrupt file! Delete the file in {archive} and try again.")
archive
})
cli_inform("{.cls {class(self)[[1]]}} Extracting images and processing dataset...")
untar(archives[[1]], exdir = self$raw_folder)
labels <- R.matlab::readMat(archives[[2]])$labels
setids <- R.matlab::readMat(archives[[3]])
set_map <- list(
train = as.integer(setids$trnid),
val = as.integer(setids$valid),
test = as.integer(setids$tstid)
)
split_name <- self$split
idxs <- set_map[[split_name]]
jpg_dir <- file.path(self$raw_folder, "jpg")
paths <- file.path(jpg_dir, glue::glue("image_{sprintf('%05d', idxs)}.jpg"))
lbls <- as.integer(labels[idxs])
saveRDS(data.frame(img_path = paths, labels = lbls), file.path(self$processed_folder, glue::glue("{split_name}.rds")))
cli_inform("Dataset {.cls {class(self)[[1]]}} downloaded and extracted successfully.")
},
check_exists = function(split) {
fs::file_exists(file.path(self$processed_folder, glue::glue("{split}.rds")))
},
active = list(
raw_folder = function() file.path(self$root_path, "flowers102", "raw"),
processed_folder = function() file.path(self$root_path, "flowers102", "processed")
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.