Nothing
test_that("efficientnet v2 small model produce correct output shapes", {
# without pretrained
model <- model_efficientnet_v2_s(pretrained = FALSE)
input <- torch::torch_randn(1, 3, 384, 384)
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
# with pretrained
withr::with_options(list(timeout = 360), {
model <- model_efficientnet_v2_s(pretrained = TRUE)
})
input <- torch::torch_randn(1, 3, 384, 384)
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
unlink_model_file()
})
test_that("efficientnet v2 models produce correct output shapes", {
skip_if(Sys.getenv("TEST_LARGE_DATASETS", unset = "0") != "1",
"Skipping test: set TEST_LARGE_DATASETS=1 to enable tests requiring large downloads.")
variants <- list(
m = model_efficientnet_v2_m,
l = model_efficientnet_v2_l
)
sizes <- c(m = 480, l = 512)
for (name in names(variants)) {
fn <- variants[[name]]
size <- sizes[[name]]
# without pretrained
model <- fn(pretrained = FALSE)
input <- torch::torch_randn(1, 3, size, size)
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
# with pretrained
withr::with_options(list(timeout = 360), {
model <- fn(pretrained = TRUE)
})
input <- torch::torch_randn(1, 3, size, size)
out <- model(input)
expect_tensor_shape(out, c(1, 1000))
}
})
test_that("efficientnet v2 allows custom num_classes", {
model <- model_efficientnet_v2_s(num_classes = 17)
input <- torch::torch_randn(1, 3, 384, 384)
out <- model(input)
expect_tensor_shape(out, c(1, 17))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.