Nothing
#' Maximum likelihood estimation (MLE) for the three-parameter Weibull distribution.
#'
#' This function for estimating parameter of the three-parameter Weibull distribution.
#' @param x vector of quantiles.
#' @param shape shape parameter, where \eqn{\beta > 0}.
#' @param scale scale parameter, where \eqn{\alpha > 0}.
#' @param location location parameter, where \eqn{\delta \ge 0}.
#'
#' @return the estimated shape, scale and location values of the three-parameter Weibull distribution.
#' @export
#'
#' @note the result of this function may produce a Warning message, but not effect to the estimated parameter.
#'
#' @references Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume 1, chapter 21. Wiley, New York.
#'
#' @examples
#' x<- rtpwb(1000,2,3,1) #n=1000 large sample
#' mlewb(x,2,3,1)
#' x<- rtpwb(50,2,3,1) #n=50 medium sample
#' mlewb(x,2,3,1)
#' x<- rtpwb(10,2,3,1) #n=10 small sample
#' mlewb(x,2,3,1)
mlewb <- function(x,shape,scale,location){
negll<- function(par){
-sum(dtpwb(x,shape=par[1],scale=par[2],location=par[3],log=TRUE))
}
objmle<- nlminb(start = c(shape,scale,location),negll)
mle.shape <- objmle$par[1]
mle.scale <- objmle$par[2]
mle.location <- objmle$par[3]
return(c(mle.shape,mle.scale,mle.location))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.