Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, message=FALSE-----------------------------------------------------
{
library(bayesplot)
library(brms)
library(dplyr)
library(ggplot2)
library(ggdist)
library(grid)
library(tidybayes)
library(tidyr)
library(trps)
library(viridis)
}
## -----------------------------------------------------------------------------
consumer_iso
## -----------------------------------------------------------------------------
baseline_1_iso
## -----------------------------------------------------------------------------
con_os <- consumer_iso %>%
arrange(ecoregion, common_name) %>%
group_by(ecoregion, common_name) %>%
mutate(
id = row_number()
) %>%
ungroup() %>%
dplyr::select(id, common_name:d15n)
## -----------------------------------------------------------------------------
b1_os <- baseline_1_iso %>%
arrange(ecoregion, common_name) %>%
group_by(ecoregion, common_name) %>%
mutate(
id = row_number()
) %>%
ungroup() %>%
dplyr::select(id, ecoregion:d15n_b1)
## -----------------------------------------------------------------------------
combined_iso_os <- con_os %>%
left_join(b1_os, by = c("id", "ecoregion"))
## -----------------------------------------------------------------------------
combined_iso_os_1 <- combined_iso_os %>%
group_by(ecoregion, common_name) %>%
mutate(
c1 = mean(d13c_b1, na.rm = TRUE),
n1 = mean(d15n_b1, na.rm = TRUE),
l1 = 2
) %>%
ungroup()
## -----------------------------------------------------------------------------
combined_iso_os_1
## -----------------------------------------------------------------------------
model_output_os <- brm(
formula = one_source_model(),
prior = one_source_priors(),
stanvars = one_source_priors_params(),
data = combined_iso_os_1,
family = gaussian(),
chains = 2,
iter = 4000,
warmup = 1000,
cores = 4,
seed = 4,
control = list(adapt_delta = 0.95)
)
## -----------------------------------------------------------------------------
model_output_os
## -----------------------------------------------------------------------------
plot(model_output_os)
## -----------------------------------------------------------------------------
pp_check(model_output_os)
## -----------------------------------------------------------------------------
model_output_os
## -----------------------------------------------------------------------------
get_variables(model_output_os)
## -----------------------------------------------------------------------------
post_draws <- model_output_os %>%
gather_draws(b_tp_Intercept) %>%
mutate(
ecoregion = "Embayment",
common_name = "Lake Trout",
.variable = "tp"
) %>%
dplyr::select(common_name, ecoregion, .chain:.value)
## -----------------------------------------------------------------------------
post_draws
## ----message=FALSE------------------------------------------------------------
medians_ci <- model_output_os %>%
spread_draws(b_tp_Intercept) %>%
median_qi() %>%
rename(
tp = b_tp_Intercept
) %>%
mutate(
ecoregion = "Embayment",
common_name = "Lake Trout"
) %>%
mutate_if(is.numeric, round, digits = 2) %>%
dplyr::select(ecoregion, common_name, tp:.interval)
## -----------------------------------------------------------------------------
medians_ci
## -----------------------------------------------------------------------------
ggplot(data = post_draws, aes(x = .value)) +
geom_density() +
theme_bw(base_size = 15) +
theme(
panel.grid = element_blank()
) +
labs(
x = "P(Trophic Position | X)",
y = "Density"
)
## -----------------------------------------------------------------------------
ggplot(data = post_draws, aes(y = .value,
x = common_name)) +
stat_pointinterval() +
theme_bw(base_size = 15) +
theme(
panel.grid = element_blank()
) +
labs(
x = "P(Trophic Position | X)",
y = "Density"
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.