Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, message=FALSE-----------------------------------------------------
{
library(bayesplot)
library(brms)
library(dplyr)
library(ggplot2)
library(ggdist)
library(grid)
library(tidybayes)
library(tidyr)
library(trps)
library(viridis)
}
## -----------------------------------------------------------------------------
consumer_iso
## -----------------------------------------------------------------------------
baseline_1_iso
## -----------------------------------------------------------------------------
baseline_2_iso
## -----------------------------------------------------------------------------
con_ts <- consumer_iso %>%
arrange(ecoregion, common_name) %>%
group_by(ecoregion, common_name) %>%
mutate(
id = row_number()
) %>%
ungroup() %>%
dplyr::select(id, common_name:d15n)
## -----------------------------------------------------------------------------
b1_ts <- baseline_1_iso %>%
arrange(ecoregion, common_name) %>%
group_by(ecoregion, common_name) %>%
mutate(
id = row_number()
) %>%
ungroup() %>%
dplyr::select(id, ecoregion:d15n_b1)
## -----------------------------------------------------------------------------
b2_ts <- baseline_2_iso %>%
arrange(ecoregion, common_name) %>%
group_by(ecoregion, common_name) %>%
mutate(
id = row_number()
) %>%
ungroup() %>%
dplyr::select(id, ecoregion:d15n_b2)
## -----------------------------------------------------------------------------
combined_iso_ts <- con_ts %>%
left_join(b1_ts, by = c("id", "ecoregion")) %>%
left_join(b2_ts, by = c("id", "ecoregion"))
## -----------------------------------------------------------------------------
combined_iso_ts_1 <- combined_iso_ts %>%
group_by(ecoregion, common_name) %>%
mutate(
c1 = mean(d13c_b1, na.rm = TRUE),
n1 = mean(d15n_b1, na.rm = TRUE),
c2 = mean(d13c_b2, na.rm = TRUE),
n2 = mean(d15n_b2, na.rm = TRUE),
l1 = 2
) %>%
ungroup()
## -----------------------------------------------------------------------------
combined_iso_ts_1
## -----------------------------------------------------------------------------
model_output_ts <- brm(
formula = two_source_model(),
prior = two_source_priors(),
stanvars = two_source_priors_params(),
data = combined_iso_ts_1,
family = gaussian(),
chains = 2,
iter = 4000,
warmup = 1000,
cores = 4,
seed = 4,
control = list(adapt_delta = 0.95)
)
## -----------------------------------------------------------------------------
model_output_ts
## -----------------------------------------------------------------------------
plot(model_output_ts)
## -----------------------------------------------------------------------------
pp_check(model_output_ts, resp = "d13c")
## -----------------------------------------------------------------------------
pp_check(model_output_ts, resp = "d15n")
## -----------------------------------------------------------------------------
model_output_ts
## -----------------------------------------------------------------------------
get_variables(model_output_ts)
## -----------------------------------------------------------------------------
post_draws <- model_output_ts %>%
gather_draws(b_d13c_alpha_Intercept, b_d15n_tp_Intercept) %>%
mutate(
ecoregion = "Embayment",
common_name = "Lake Trout",
.variable = case_when(
.variable %in% "b_d15n_tp_Intercept" ~ "tp",
.variable %in% "b_d13c_alpha_Intercept" ~ "alpha"
)
) %>%
dplyr::select(common_name, ecoregion, .chain:.value)
## -----------------------------------------------------------------------------
post_draws
## ----message=FALSE------------------------------------------------------------
medians_ci <- model_output_ts %>%
gather_draws(b_d13c_alpha_Intercept,
b_d15n_tp_Intercept) %>%
median_qi() %>%
mutate(
ecoregion = "Embayment",
common_name = "Lake Trout",
.variable = case_when(
.variable %in% "b_d15n_tp_Intercept" ~ "tp",
.variable %in% "b_d13c_alpha_Intercept" ~ "alpha"
)
) %>%
mutate_if(is.numeric, round, digits = 2)
## -----------------------------------------------------------------------------
medians_ci
## -----------------------------------------------------------------------------
ggplot(data = post_draws, aes(x = .value)) +
geom_density() +
facet_wrap(~ .variable, scale = "free") +
theme_bw(base_size = 15) +
theme(
panel.grid = element_blank(),
strip.background = element_blank(),
) +
labs(
x = "P(Estimate | X)",
y = "Density"
)
## -----------------------------------------------------------------------------
ggplot(data = post_draws, aes(y = .value,
x = common_name)) +
stat_pointinterval() +
facet_wrap(~ .variable, scale = "free") +
theme_bw(base_size = 15) +
theme(
panel.grid = element_blank(),
strip.background = element_blank(),
) +
labs(
x = "P(Estimate | X)",
y = "Density"
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.